cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370335 Expansion of Sum_{n>=0} 5^n * (2*4^n + 1)/3 * x^(n*(n+1)/2).

Original entry on oeis.org

1, 15, 0, 275, 0, 0, 5375, 0, 0, 0, 106875, 0, 0, 0, 0, 2134375, 0, 0, 0, 0, 0, 42671875, 0, 0, 0, 0, 0, 0, 853359375, 0, 0, 0, 0, 0, 0, 0, 17066796875, 0, 0, 0, 0, 0, 0, 0, 0, 341333984375, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6826669921875, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 136533349609375
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2024

Keywords

Comments

Equals the self-convolution cube of A370336.

Examples

			G.f.: A(x) = 1 + 15*x + 275*x^3 + 5375*x^6 + 106875*x^10 + 2134375*x^15 + 42671875*x^21 + 853359375*x^28 + 17066796875*x^36 + 341333984375*x^45 + ...
RELATED SERIES.
The cube root of the g.f. A(x) is an integer series starting as
A(x)^(1/3) = 1 + 5*x - 25*x^2 + 300*x^3 - 3000*x^4 + 34375*x^5 - 426750*x^6 + 5539375*x^7 - 73968750*x^8 + 1010175000*x^9 + ... + A370336(n)*x^n + ...
		

Crossrefs

Cf. A370015.

Programs

  • PARI
    {a(n) = my(A);
    A = sum(m=0, sqrtint(2*n+1), 5^m*(2*4^m + 1)/3 * x^(m*(m+1)/2) +x*O(x^n));
    polcoeff(H=A, n)}
    for(n=0, 66, print1(a(n), ", "))