cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370347 Number T(n,k) of partitions of [3n] into n sets of size 3 having exactly k sets {3j-2,3j-1,3j} (1<=j<=n); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 9, 0, 1, 252, 27, 0, 1, 14337, 1008, 54, 0, 1, 1327104, 71685, 2520, 90, 0, 1, 182407545, 7962624, 215055, 5040, 135, 0, 1, 34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1, 8877242235393, 279255545568, 5107411260, 74317824, 1003590, 14112, 252, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 15 2024

Keywords

Examples

			T(2,0) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
T(2,2) = 1: 123|456.
Triangle T(n,k) begins:
            1;
            0,          1;
            9,          0,        1;
          252,         27,        0,      1;
        14337,       1008,       54,      0,    1;
      1327104,      71685,     2520,     90,    0,   1;
    182407545,    7962624,   215055,   5040,  135,   0, 1;
  34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1;
  ...
		

Crossrefs

Row sums give A025035.
Column k=0 gives A370357.
T(n+1,n-1) gives A027468.
T(n+2,n-1) gives 252*A000292.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [1, 0, 9][n+1],
          9*(n*(n-1)/2*b(n-1)+(n-1)^2*b(n-2)+(n-1)*(n-2)/2*b(n-3)))
        end:
    T:= (n, k)-> b(n-k)*binomial(n, k):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = binomial(n,k) * A370357(n-k).
Sum_{k=1..n} T(n,k) = A370358(n).
T(n,k) mod 9 = A023531(n,k).