A370347 Number T(n,k) of partitions of [3n] into n sets of size 3 having exactly k sets {3j-2,3j-1,3j} (1<=j<=n); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 9, 0, 1, 252, 27, 0, 1, 14337, 1008, 54, 0, 1, 1327104, 71685, 2520, 90, 0, 1, 182407545, 7962624, 215055, 5040, 135, 0, 1, 34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1, 8877242235393, 279255545568, 5107411260, 74317824, 1003590, 14112, 252, 0, 1
Offset: 0
Examples
T(2,0) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234. T(2,2) = 1: 123|456. Triangle T(n,k) begins: 1; 0, 1; 9, 0, 1; 252, 27, 0, 1; 14337, 1008, 54, 0, 1; 1327104, 71685, 2520, 90, 0, 1; 182407545, 7962624, 215055, 5040, 135, 0, 1; 34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<3, [1, 0, 9][n+1], 9*(n*(n-1)/2*b(n-1)+(n-1)^2*b(n-2)+(n-1)*(n-2)/2*b(n-3))) end: T:= (n, k)-> b(n-k)*binomial(n, k): seq(seq(T(n, k), k=0..n), n=0..10);