A370368 Total sum over all j in [n] of the number of partitions of [j*(n-j)] into (n-j) sets of size j having no set of consecutive numbers whose maximum (if j>0) is a multiple of j.
1, 1, 1, 1, 3, 18, 347, 20679, 4064088, 3206794270, 9817417580226, 147957639234186793, 9515125170594095021483, 3369265619091187775505912588, 5792039079391869138256364232105952, 55416702792637442337898498177490975722265
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..54
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, k) `if`(k=0, `if`(n=0, 1, 0), add( (-1)^(n-j)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n)) end: a:= n-> add(b(j, n-j), j=0..n): seq(a(n), n=0..15);