cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370366 Number A(n,k) of partitions of [k*n] into n sets of size k having no set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 9, 8, 0, 0, 1, 0, 34, 252, 60, 0, 0, 1, 0, 125, 5672, 14337, 544, 0, 0, 1, 0, 461, 125750, 2604732, 1327104, 6040, 0, 0, 1, 0, 1715, 2857472, 488360625, 2533087904, 182407545, 79008, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 16 2024

Keywords

Examples

			A(2,3) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Square array A(n,k) begins:
  1, 1,   1,       1,          1,             1, ...
  0, 0,   0,       0,          0,             0, ...
  0, 0,   2,       9,         34,           125, ...
  0, 0,   8,     252,       5672,        125750, ...
  0, 0,  60,   14337,    2604732,     488360625, ...
  0, 0, 544, 1327104, 2533087904, 5192229797500, ...
		

Crossrefs

Columns k=0+1,2-3 give: A000007, A053871, A370357.
Rows n=0-2 give: A000012, A000004, A010763(n-1) for k>0.
Main diagonal gives A370367.
Antidiagonal sums give A370368.

Programs

  • Maple
    A:= proc(n, k) `if`(k=0,`if`(n=0, 1, 0), add(
          (-1)^(n-j)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

A(n,k) = A060540(n,k) - A370363(n,k) for n,k >= 1.

A370365 Total sum over all j in [n] of the number of partitions of [j*(n-j)] into (n-j) sets of size j having at least one set of consecutive numbers whose maximum (if j>0) is a multiple of j.

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 77, 1571, 101924, 21824842, 18998281193, 63437859518312, 1037654210033812290, 72422876152852051595343, 27306605231809196751929593081, 50723306700937648229840111395656830, 510196838745355443955126736574361550469276
Offset: 0

Views

Author

Alois P. Heinz, Feb 16 2024

Keywords

Crossrefs

Antidiagonal sums of A370363.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, signum(n), add(
          (-1)^(n-j+1)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n-1))
        end:
    a:= n-> add(b(j, n-j), j=0..n):
    seq(a(n), n=0..16);

Formula

a(n) = Sum_{j=0..n} A370363(j,n-j).
a(n) = A370407(n) - A370368(n).

A370407 Total sum over all j in [n] of the number of partitions of [j*(n-j)] into (n-j) sets of size j.

Original entry on oeis.org

1, 2, 3, 4, 7, 29, 424, 22250, 4166012, 3228619112, 9836415861419, 148021077093705105, 9516162824804128833773, 3369338041967340627557507931, 5792066385997100947453116161699033, 55416753515944143275546728017602371379095
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(j=n, 1, (j*(n-j))!/((n-j)!^j*j!)), j=0..n):
    seq(a(n), n=0..15);

Formula

a(n) = A370365(n) + A370368(n).
a(n) = Sum_{j=0..n} A361948(j,n-j).
a(n) mod 2 = A275973(n-1) for n>=2.
Showing 1-3 of 3 results.