A370430 Expansion of e.g.f. C(x,k) satisfying C(x,k) = cosh( x*cosh(k*x*C(x,k)) ), as a triangle read by rows.
1, 1, 0, 1, 12, 0, 1, 420, 120, 0, 1, 10248, 36400, 896, 0, 1, 196920, 4858560, 2170560, 5760, 0, 1, 3247860, 461126160, 1127738304, 102960000, 33792, 0, 1, 48361404, 35248293080, 340884800256, 187282263168, 4083183104, 186368, 0, 1, 669616080, 2290777550880, 76526954183680, 153279541958400, 25081621813248, 141360128000, 983040, 0
Offset: 0
Examples
E.g.f.: C(x,k) = 1 + (1)*x^2/2! + (1 + 12*k^2)*x^4/4! + (1 + 420*k^2 + 120*k^4)*x^6/6! + (1 + 10248*k^2 + 36400*k^4 + 896*k^6)*x^8/8! + (1 + 196920*k^2 + 4858560*k^4 + 2170560*k^6 + 5760*k^8)*x^10/10! + (1 + 3247860*k^2 + 461126160*k^4 + 1127738304*k^6 + 102960000*k^8 + 33792*k^10)*x^12/12! + (1 + 48361404*k^2 + 35248293080*k^4 + 340884800256*k^6 + 187282263168*k^8 + 4083183104*k^10 + 186368*k^12)*x^14/14! + ... where C(x,k) = cosh( x*cosh(k*x*C(x,k)) ). This triangle of coefficients a(n,j) of x^(2*n)*k^(2*j)/(2*n)! in C(x,k) begins 1; 1, 0; 1, 12, 0; 1, 420, 120, 0; 1, 10248, 36400, 896, 0; 1, 196920, 4858560, 2170560, 5760, 0; 1, 3247860, 461126160, 1127738304, 102960000, 33792, 0; 1, 48361404, 35248293080, 340884800256, 187282263168, 4083183104, 186368, 0; 1, 669616080, 2290777550880, 76526954183680, 153279541958400, 25081621813248, 141360128000, 983040, 0; 1, 8781531696, 131249560881600, 14052066349007232, 83205186217021440, 51607880705931264, 2855197025501184, 4416170065920, 5013504, 0; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1325
Programs
-
PARI
{a(n, j) = my(C=1, S=x, D=1, T=x, Ox=x*O(x^(2*n))); for(i=1, 2*n, C = cosh( x*cosh(k*x*C +Ox) ); S = sinh( x*cosh(k*x*sqrt(1 + S^2 +Ox)) ); D = cosh( k*x*cosh(x*D +Ox)); T = (1/k)*sinh( k*x*cosh(x*sqrt(1 + k^2*T^2 +Ox)));); (2*n)! * polcoeff(polcoeff(C, 2*n, x), 2*j, k)} for(n=0, 10, for(j=0, n, print1( a(n, j), ", ")); print(""))
Formula
E.g.f.: C(x,k) = Sum_{n>=0} Sum_{j=0..n} a(n,j) * x^(2*n)*k^(2*j)/(2*n)! along with the related functions C = C(x,k), S = S(x,k), D = D(x,k), and T = T(x,k) satisfy the following formulas.
Definition.
(1.a) (C + S) = exp(x*D).
(1.b) (D + k*T) = exp(k*x*C).
(2.a) C^2 - S^2 = 1.
(2.b) D^2 - k^2*T^2 = 1.
Hyperbolic functions.
(3.a) C = cosh(x*D).
(3.b) S = sinh(x*D).
(3.c) D = cosh(k*x*C).
(3.d) T = (1/k) * sinh(k*x*C).
(4.a) C = cosh( x*cosh(k*x*C) ).
(4.b) S = sinh( x*cosh(k*x*sqrt(1 + S^2)) ).
(4.c) D = cosh( k*x*cosh(x*D) ).
(4.d) T = (1/k) * sinh( k*x*cosh(x*sqrt(1 + k^2*T^2)) ).
(5.a) (C*D + k*S*T) = cosh(x*D + k*x*C).
(5.b) (S*D + k*C*T) = sinh(x*D + k*x*C).
Transformations.
(6.a) C(x, 1/k) = D(x/k, k).
(6.b) D(x, 1/k) = C(x/k, k).
(6.c) S(x, 1/k) = k * T(x/k, k).
(6.d) T(x, 1/k) = k * S(x/k, k).
(6.e) D(x, k) = C(k*x, 1/k).
(6.f) C(x, k) = D(k*x, 1/k).
(6.g) T(x, k) = (1/k) * S(k*x, 1/k).
(6.h) S(x, k) = (1/k) * T(k*x, 1/k).
Integrals.
(7.a) C = 1 + Integral S*D + x*S*D' dx.
(7.b) S = Integral C*D + x*C*D' dx.
(7.c) D = 1 + k^2 * Integral T*C + x*T*C' dx.
(7.d) T = Integral D*C + x*D*C' dx.
Derivatives (d/dx).
(8.a) C*C' = S*S'.
(8.b) D*D' = k^2*T*T'.
(9.a) C' = S * (D + x*D').
(9.b) S' = C * (D + x*D').
(9.c) D' = k^2 * T * (C + x*C').
(9.d) T' = D * (C + x*C').
(10.a) C' = S * (D + k^2*x*T*C) / (1 - k^2*x^2*S*T).
(10.b) S' = C * (D + k^2*x*T*C) / (1 - k^2*x^2*S*T).
(10.c) D' = k^2 * T * (C + x*S*D) / (1 - k^2*x^2*S*T).
(10.d) T' = D * (C + x*S*D) / (1 - k^2*x^2*S*T).
(11.a) (C + x*C') = (C + x*S*D) / (1 - k^2*x^2*S*T).
(11.b) (D + x*D') = (D + k^2*x*T*C) / (1 - k^2*x^2*S*T).
Logarithms.
(12.a) D = log(C + sqrt(C^2 - 1)) / x.
(12.b) C = log(D + sqrt(D^2 - 1)) / (k*x).
(12.c) T = sqrt(log(S + sqrt(1 + S^2))^2 - x^2) / (k*x).
(12.d) S = sqrt(log(k*T + sqrt(1 + k^2*T^2))^2 - k^2*x^2) / (k*x).
Comments