cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370441 Expansion of g.f. A(x) satisfying A(x) = A( x^3 + 3*A(x)^4 )^(1/3), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 3, 12, 54, 261, 1324, 6952, 37461, 205977, 1151034, 6518085, 37321748, 215714904, 1256889150, 7374790400, 43537323406, 258417908640, 1541250594499, 9231988699115, 55514033703450, 334993491267955, 2027954403410504, 12312557796833622, 74955173794196890, 457431093085335708
Offset: 1

Views

Author

Paul D. Hanna, Mar 09 2024

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 54*x^5 + 261*x^6 + 1324*x^7 + 6952*x^8 + 37461*x^9 + 205977*x^10 + 1151034*x^11 + 6518085*x^12 + ...
where A(x)^3 = A( x^3 + 3*A(x)^4 ).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 55*x^6 + 270*x^7 + 1386*x^8 + 7347*x^9 + 39897*x^10 + 220779*x^11 + 1240392*x^12 + ...
A(x)^4 = x^4 + 4*x^5 + 18*x^6 + 88*x^7 + 451*x^8 + 2388*x^9 + 12958*x^10 + 71668*x^11 + 402489*x^12 + ...
Let B(x) denote the series reversion of A(x), A(B(x)) = x, where
B(x) = x - x^2 - x^3 - 2*x^4 - 4*x^5 - 9*x^6 - 22*x^7 - 55*x^8 - 142*x^9 - 376*x^10 - 1011*x^11 - 2758*x^12 + ... + (-1)^(n+1)*A107092(n)*x^n + ...
then B(x)^3 = B(x^3) - 3*x^4, where
B(x)^3 = x^3 - 3*x^4 - x^6 - x^9 - 2*x^12 - 4*x^15 - 9*x^18 - 22*x^21 - 55*x^24 - 142*x^27 - 376*x^30 - 1011*x^33 - 2758*x^36 + ...
Also, we have D(x) = x/B(x) is the g.f. of A091190, which begins
D(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + 273*x^7 + 778*x^8 + 2240*x^9 + 6499*x^10 + 18976*x^11 + ... + A091190(n)*x^n + ...
such that D(x)^3 = D(x^3)/(1 - 3*x*D(x^3)).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],G); for(i=1,n, G = x*Ser(A); A = Vec((subst(G,x, x^3 + 3*x^2*G^2) + x^4*O(x^#A))^(1/3)); );A[n+1]}
    for(n=0,40, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n) * x^n satisfies:
(1) A(x) = A( x^3 + 3*A(x)^4 )^(1/3).
(2) B(x)^3 = B(x^3) - 3*x^4, where A(B(x)) = x.
(3) A(x) = x*D(A(x)) where D(x) = x/Series_Reversion(A(x)) is the g.f. of A091190.