cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370474 G.f. A(x) satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(3/2)).

Original entry on oeis.org

1, 2, 9, 54, 372, 2778, 21873, 178786, 1502649, 12904524, 112741664, 998871030, 8953443276, 81047485148, 739846170864, 6803054508702, 62954736555836, 585850907166084, 5479077065774682, 51470699845616004, 485456696541512442, 4595280949098247422
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+3*k/2+1, n)/(3*n/2+3*k/2+1));
    
  • PARI
    a(n, r=2, s=-1, t=5, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 12 2024

Formula

a(n) = Sum{k=0..n} binomial(n,k) * binomial(3*n/2+3*k/2+1,n)/(3*n/2+3*k/2+1).
From Seiichi Manyama, Dec 12 2024: (Start)
G.f. A(x) satisfies:
(1) A(x) = ( 1 + x*A(x)^(5/2)/(1 + x*A(x)^(3/2)) )^2.
(2) A(x) = 1/( 1 - x*A(x)^2/(1 + x*A(x)^(3/2)) )^2.
(3) A(x) = B(x)^2 where B(x) is the g.f. of A271469.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r). (End)

A370471 G.f. satisfies A(x) = 1 + x * A(x)^(1/2) * (1 + A(x)^(5/2)).

Original entry on oeis.org

1, 2, 7, 36, 215, 1396, 9571, 68174, 499554, 3741430, 28512825, 220388592, 1723616516, 13614340486, 108450776960, 870264507952, 7028286595932, 57081622558906, 465925734601567, 3820141417134780, 31447663707379395, 259821859662976686, 2153756454578830070
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(n/2+5*k/2+1, n)/(n/2+5*k/2+1));

Formula

a(n) = Sum{k=0..n} binomial(n,k) * binomial(n/2+5*k/2+1,n)/(n/2+5*k/2+1).

A370476 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).

Original entry on oeis.org

1, 1, 5, 38, 342, 3377, 35371, 385945, 4339656, 49932707, 585090560, 6957809536, 83757820470, 1018680937003, 12498390564184, 154508184836297, 1922689912844045, 24064811129732875, 302750645498966609, 3826284443456719470, 48557449822608739500
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+5*k/2+1/2, n)/(3*n+5*k+1));

Formula

G.f. A(x) satisfies:
(1) A(x)^2 = 1 + x * A(x)^3 * (1 + A(x)^5).
(2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A370475.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n/2+5*k/2+1/2,n)/(3*n+5*k+1).
Showing 1-3 of 3 results.