cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370498 Number of paths from (0, 0) to (2n, 2n) in an n X n grid using only steps north, northeast and east (i.e., steps (1, 0), (1, 1), and (0, 1)) and that do not pass through diagonal points with odd coordinates.

Original entry on oeis.org

1, 4, 60, 1204, 27724, 691812, 18198492, 496924692, 13951437804, 400212569284, 11679079547260, 345621250279284, 10347645099250060, 312857431914558244, 9538937406065229084, 292961855077076241108, 9054857076142602126636, 281439018537947499788676, 8791174819979940884130492
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 4^n, ((8*n-6)*(34*n^2-51*n+11)
          *a(n-1)-(n-2)*(4*n-1)*(2*n-3)*a(n-2))/(n*(4*n-5)*(2*n+1)))
        end:
    seq(a(n), n=0..18);  # Alois P. Heinz, Feb 20 2024
  • Mathematica
    A[n_, m_] :=  A[n, m] = Which[m*n == 0, 1, m == n && Mod[m, 2] == 1, 0, True, A[n - 1, m] + A[n, m - 1] + A[n - 1, m - 1]]; Table[A[2 n, 2 n], {n, 0, 45}]

Formula

a(n) = b(2*n,2*n) where b(n,0) = b(0,m) = 1, b(2n+1,2n+1) = 0 and b(n,m) = b(n-1,m-1) + b(n-1,m) + b(n,m-1) otherwise.
a(n) = ceiling((2/3)*A138462(n)).
a(n) ~ (1 + sqrt(2))^(4*n+1) / (3 * 2^(5/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 14 2024
D-finite with recurrence +n*(2*n+1)*a(n) +(-70*n^2+73*n-15)*a(n-1) +(70*n^2-277*n+270)*a(n-2) -(2*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Mar 25 2024