A370498 Number of paths from (0, 0) to (2n, 2n) in an n X n grid using only steps north, northeast and east (i.e., steps (1, 0), (1, 1), and (0, 1)) and that do not pass through diagonal points with odd coordinates.
1, 4, 60, 1204, 27724, 691812, 18198492, 496924692, 13951437804, 400212569284, 11679079547260, 345621250279284, 10347645099250060, 312857431914558244, 9538937406065229084, 292961855077076241108, 9054857076142602126636, 281439018537947499788676, 8791174819979940884130492
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 4^n, ((8*n-6)*(34*n^2-51*n+11) *a(n-1)-(n-2)*(4*n-1)*(2*n-3)*a(n-2))/(n*(4*n-5)*(2*n+1))) end: seq(a(n), n=0..18); # Alois P. Heinz, Feb 20 2024
-
Mathematica
A[n_, m_] := A[n, m] = Which[m*n == 0, 1, m == n && Mod[m, 2] == 1, 0, True, A[n - 1, m] + A[n, m - 1] + A[n - 1, m - 1]]; Table[A[2 n, 2 n], {n, 0, 45}]
Formula
a(n) = b(2*n,2*n) where b(n,0) = b(0,m) = 1, b(2n+1,2n+1) = 0 and b(n,m) = b(n-1,m-1) + b(n-1,m) + b(n,m-1) otherwise.
a(n) = ceiling((2/3)*A138462(n)).
a(n) ~ (1 + sqrt(2))^(4*n+1) / (3 * 2^(5/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 14 2024
D-finite with recurrence +n*(2*n+1)*a(n) +(-70*n^2+73*n-15)*a(n-1) +(70*n^2-277*n+270)*a(n-2) -(2*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Mar 25 2024