cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370506 T(n,k) is the number permutations p of [n] that are j-dist-increasing for exactly k distinct values j in [n], where p is j-dist-increasing if j>=0 and p(i)=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 11, 8, 4, 1, 0, 55, 38, 19, 7, 1, 0, 319, 228, 110, 50, 12, 1, 0, 2233, 1574, 775, 322, 115, 20, 1, 0, 17641, 12524, 6216, 2611, 1033, 261, 33, 1, 0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1, 0, 1578667, 1119496, 556754, 238425, 91764, 33929, 8372, 1304, 88, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2024

Keywords

Examples

			T(4,1) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321.
T(4,2) = 8: 1342, 1423, 1432, 2314, 2413, 3124, 3142, 3214.
T(4,3) = 4: 1243, 1324, 2134, 2143.
T(4,4) = 1: 1234.
Triangle T(n,k) begins:
  1;
  0,      1;
  0,      1,      1;
  0,      3,      2,     1;
  0,     11,      8,     4,     1;
  0,     55,     38,    19,     7,    1;
  0,    319,    228,   110,    50,   12,    1;
  0,   2233,   1574,   775,   322,  115,   20,   1;
  0,  17641,  12524,  6216,  2611, 1033,  261,  33,  1;
  0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1;
  ...
		

Crossrefs

Column k=0 gives A000007.
Column k=1 gives A370514 or A370507(n,n) for n>=1.
Row sums give A000142.
T(n,n-1) gives A000071(n+1).

Programs

  • Maple
    q:= proc(l, k) local i; for i from 1 to nops(l)-k do
          if l[i]>=l[i+k] then return 0 fi od; 1
        end:
    b:= proc(n) option remember; add(x^add(
          q(l, j), j=1..n), l=combinat[permute](n))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n,k), k=0..n), n=0..8);
  • Mathematica
    q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l]-k, i++,
        If[l[[i]] >= l[[i+k]], Return@0]]; 1];
    b[n_] := b[n] = Sum[x^Sum[q[l, j], {j, 1, n}], {l, Permutations[Range[n]]}];
    T[n_, k_] := Coefficient[b[n], x, k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2024, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A248687(n) for n>=1.