A370506
T(n,k) is the number permutations p of [n] that are j-dist-increasing for exactly k distinct values j in [n], where p is j-dist-increasing if j>=0 and p(i)=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 11, 8, 4, 1, 0, 55, 38, 19, 7, 1, 0, 319, 228, 110, 50, 12, 1, 0, 2233, 1574, 775, 322, 115, 20, 1, 0, 17641, 12524, 6216, 2611, 1033, 261, 33, 1, 0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1, 0, 1578667, 1119496, 556754, 238425, 91764, 33929, 8372, 1304, 88, 1
Offset: 0
Examples
T(4,1) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321. T(4,2) = 8: 1342, 1423, 1432, 2314, 2413, 3124, 3142, 3214. T(4,3) = 4: 1243, 1324, 2134, 2143. T(4,4) = 1: 1234. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 3, 2, 1; 0, 11, 8, 4, 1; 0, 55, 38, 19, 7, 1; 0, 319, 228, 110, 50, 12, 1; 0, 2233, 1574, 775, 322, 115, 20, 1; 0, 17641, 12524, 6216, 2611, 1033, 261, 33, 1; 0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1; ...
Links
- Wikipedia, K-sorted sequence
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
q:= proc(l, k) local i; for i from 1 to nops(l)-k do if l[i]>=l[i+k] then return 0 fi od; 1 end: b:= proc(n) option remember; add(x^add( q(l, j), j=1..n), l=combinat[permute](n)) end: T:= (n, k)-> coeff(b(n), x, k): seq(seq(T(n,k), k=0..n), n=0..8);
-
Mathematica
q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l]-k, i++, If[l[[i]] >= l[[i+k]], Return@0]]; 1]; b[n_] := b[n] = Sum[x^Sum[q[l, j], {j, 1, n}], {l, Permutations[Range[n]]}]; T[n_, k_] := Coefficient[b[n], x, k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2024, after Alois P. Heinz *)
Formula
Sum_{k=0..n} k * T(n,k) = A248687(n) for n>=1.