A370507
T(n,k) is the number permutations p of [n] that are k-dist-increasing but not j-dist-increasing for any j=0 and p(i)=0, 0<=k<=n, read by rows.
=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 5, 7, 11, 0, 1, 9, 22, 33, 55, 0, 1, 19, 77, 112, 192, 319, 0, 1, 34, 189, 480, 788, 1315, 2233, 0, 1, 69, 526, 2187, 3500, 5987, 10409, 17641, 0, 1, 125, 1625, 6811, 18273, 30568, 53791, 92917, 158769, 0, 1, 251, 4111, 23507, 101424, 167480, 299769, 528253, 925337, 1578667
Offset: 0
Examples
T(4,1) = 1: 1234. T(4,2) = 5: 1243, 1324, 2134, 2143, 3142. T(4,3) = 7: 1342, 1423, 1432, 2314, 2413, 3124, 3214. T(4,4) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 2, 3; 0, 1, 5, 7, 11; 0, 1, 9, 22, 33, 55; 0, 1, 19, 77, 112, 192, 319; 0, 1, 34, 189, 480, 788, 1315, 2233; 0, 1, 69, 526, 2187, 3500, 5987, 10409, 17641; 0, 1, 125, 1625, 6811, 18273, 30568, 53791, 92917, 158769; ...
Links
- Wikipedia, K-sorted sequence
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
q:= proc(l, k) local i; for i from 1 to nops(l)-k do if l[i]>=l[i+k] then return 0 fi od; 1 end: m:= proc(l) local k; for k from 0 to nops(l) do if q(l, k)>0 then return k fi od end: b:= proc(n) b(n):= add(x^m(l), l=combinat[permute](n)) end: T:= (n, k)-> coeff(b(n), x, k): seq(seq(T(n, k), k=0..n), n=0..8);
-
Mathematica
q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l] - k, i++, If[l[[i]] >= l[[i + k]], Return [0]]]; 1]; m[l_] := Module[{k}, For[k = 0, k <= Length[l], k++, If[q[l, k] > 0, Return[k]]]]; b[n_] := Sum[x^m[l], {l, Permutations[Range@n]}]; T[n_, k_] := Coefficient[b[n], x, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)