cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370524 Number of permutations of [n] having exactly one adjacent 2-cycle.

Original entry on oeis.org

0, 0, 1, 2, 4, 18, 99, 612, 4376, 35620, 324965, 3285270, 36462924, 440840358, 5767387591, 81184266632, 1223531387056, 19657686459528, 335404201199049, 6056933308042410, 115417137054004820, 2314399674388138810, 48717810299204919851, 1074106226256896375532
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2024

Keywords

Examples

			The permutations of {1,2,3} having exactly one adjacent 2-cycle are (12)(3) and (1)(23). So a(3) = 2.
		

Crossrefs

Column k=2 of A370527.
Column k=1 of A177248

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, k!*x^(k+1)/(1+x^2)^(k+1))))
    
  • PARI
    a(n, k=1, q=2) = sum(j=0, n\q-k, (-1)^j*(n-(q-1)*(j+k))!/j!)/k!;

Formula

G.f.: Sum_{k>=1} k! * x^(k+1) / (1+x^2)^(k+1).
a(n) = Sum_{k=0..floor(n/2)-1} (-1)^k * (n-k-1)! / k!.

A370525 Number of permutations of [n] having exactly one adjacent 3-cycle.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 22, 114, 696, 4923, 39612, 357900, 3588836, 39556420, 475392840, 6187284605, 86701097310, 1301467245330, 20835850494474, 354382860600678, 6381494425302864, 121290065781743383, 2426510081356069016, 50969474697328055064, 1121571023472780698152
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2024

Keywords

Crossrefs

Column k=3 of A370527.
Column k=1 of A177250.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, k!*x^(k+2)/(1+x^3)^(k+1))))
    
  • PARI
    a(n, k=1, q=3) = sum(j=0, n\q-k, (-1)^j*(n-(q-1)*(j+k))!/j!)/k!;

Formula

G.f.: Sum_{k>=1} k! * x^(k+2) / (1+x^3)^(k+1).
a(n) = Sum_{k=0..floor(n/3)-1} (-1)^k * (n-2*k-2)! / k!.

A369098 Number of permutations of [n] having exactly one adjacent 4-cycle.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 24, 118, 714, 5016, 40200, 362163, 3623772, 39876540, 478639080, 6223394516, 87138394540, 1307195547720, 20916564680760, 355600269756485, 6401066270800350, 121624180731849810, 2432546364331038480, 51084540451761077514, 1123879093137556106358
Offset: 0

Views

Author

Seiichi Manyama, Feb 24 2024

Keywords

Examples

			The permutations of {1,2,3,4,5} having exactly one adjacent 4-cycle are (1234)(5) and (1)(2345). So a(5) = 2.
		

Crossrefs

Column k=4 of A370527.
Column k=1 of A177252.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, k!*x^(k+3)/(1+x^4)^(k+1))))
    
  • PARI
    a(n, k=1, q=4) = sum(j=0, n\q-k, (-1)^j*(n-(q-1)*(j+k))!/j!)/k!;

Formula

G.f.: Sum_{k>=1} k! * x^(k+3) / (1+x^4)^(k+1).
a(n) = Sum_{k=0..floor(n/4)-1} (-1)^k * (n-3*k-3)! / k!.
Showing 1-3 of 3 results.