cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370529 Number of permutations of [n] having exactly three adjacent 2-cycles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 16, 100, 730, 5940, 54160, 547540, 6077155, 73473400, 961231264, 13530711096, 203921897844, 3276281076600, 55900700199840, 1009488884673720, 19236189509000805, 385733279064689820, 8119635049867486640, 179017704376149395900
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2024

Keywords

Crossrefs

Column k=3 of A177248.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<7, [0$6, 1][n+1], ((n-5)*(n-6)*(n-3)*a(n-1)
           -6*(n-4)*a(n-2)+(n-2)*(n-3)*((n-5)*a(n-3)+a(n-4)))/((n-5)*(n-6)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 21 2024
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0], Vec(sum(k=3, N, k!*x^(k+3)/(1+x^2)^(k+1))/6))
    
  • PARI
    a(n, k=3, q=2) = sum(j=0, n\q-k, (-1)^j*(n-(q-1)*(j+k))!/j!)/k!;

Formula

G.f.: (1/6) * Sum_{k>=3} k! * x^(k+3) / (1+x^2)^(k+1).
a(n) = (1/6) * Sum_{k=0..floor(n/2)-3} (-1)^k * (n-k-3)! / k!.
a(n) ~ n! / (6*n^3). - Vaclav Kotesovec, Feb 21 2024