cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370539 Expansion of g.f. (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).

Original entry on oeis.org

1, 2, 8, 30, 118, 462, 1824, 7208, 28558, 113274, 449848, 1787968, 7111716, 28303548, 112700032, 448939744, 1788990454, 7131191202, 28433681832, 113398298336, 452345641820, 1804739556100, 7201621713568, 28741559322464, 114722405784428, 457971605148996, 1828422022584176
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2024

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 30*x^3 + 118*x^4 + 462*x^5 + 1824*x^6 + 7208*x^7 + 28558*x^8 + 113274*x^9 + 449848*x^10 + ...
RELATED SERIES.
The Catalan function C(x) = (1 - sqrt(1-4*x))/(2*x) begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(x = 'x + O('x^(n+3)), C(x) = (1 - sqrt(1 - 4*x))/(2*x), A = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) );
    polcoeff(A,n);}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(x = 'x + O('x^(n+3)), A = (1 + sqrt(1 - 4*x)) * sqrt( (1 - 2*x)*(1 - sqrt(1 - 4*x^2))/2 ) / (2*x*(1-4*x)) );
    polcoeff(A,n);}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
(2) A(x) = (1 + sqrt(1 - 4*x)) * (2-3*x + x*sqrt(1 - 4*x^2)) / (4*(1-4*x)).
a(n) ~ (10 + sqrt(3)) * 2^(2*n - 5). - Vaclav Kotesovec, Mar 14 2024