A370539 Expansion of g.f. (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
1, 2, 8, 30, 118, 462, 1824, 7208, 28558, 113274, 449848, 1787968, 7111716, 28303548, 112700032, 448939744, 1788990454, 7131191202, 28433681832, 113398298336, 452345641820, 1804739556100, 7201621713568, 28741559322464, 114722405784428, 457971605148996, 1828422022584176
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 8*x^2 + 30*x^3 + 118*x^4 + 462*x^5 + 1824*x^6 + 7208*x^7 + 28558*x^8 + 113274*x^9 + 449848*x^10 + ... RELATED SERIES. The Catalan function C(x) = (1 - sqrt(1-4*x))/(2*x) begins C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
Programs
-
PARI
{a(n) = my(x = 'x + O('x^(n+3)), C(x) = (1 - sqrt(1 - 4*x))/(2*x), A = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x) ); polcoeff(A,n);} for(n=0,30, print1(a(n),", "))
-
PARI
{a(n) = my(x = 'x + O('x^(n+3)), A = (1 + sqrt(1 - 4*x)) * sqrt( (1 - 2*x)*(1 - sqrt(1 - 4*x^2))/2 ) / (2*x*(1-4*x)) ); polcoeff(A,n);} for(n=0,30, print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = (1 - x*C(x)) * (1 - x*C(x^2)) / (1 - 4*x), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
(2) A(x) = (1 + sqrt(1 - 4*x)) * (2-3*x + x*sqrt(1 - 4*x^2)) / (4*(1-4*x)).
a(n) ~ (10 + sqrt(3)) * 2^(2*n - 5). - Vaclav Kotesovec, Mar 14 2024