A370550 a(n) is the denominator of the imaginary part of Product_{k=1..n} (1/k + i) where i is the imaginary unit.
1, 2, 1, 3, 4, 24, 9, 56, 2016, 5184, 1512, 33264, 342144, 48384, 2095632, 100590336, 12773376, 146313216, 905313024, 6552741888, 16679706624, 1216740704256, 1177309292544, 835553223622656, 6380588253118464, 226043384168448, 2506659670867968, 473758677794045952
Offset: 1
Examples
See A370547.
Programs
-
PARI
a370550(n) = denominator(imag(prod(k=1, n, 1/k+I)))
-
Python
from math import factorial, gcd from sympy.functions.combinatorial.numbers import stirling def A370550(n): return (a:=factorial(n))//gcd(a,sum(stirling(n+1,n-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1))) # Chai Wah Wu, Feb 22 2024
Formula
a(n) = denominator of A105751(n)/n!. - Chai Wah Wu, Feb 22 2024