cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A370547 a(n) is the numerator of the real part of Product_{k=1..n} (1/k + i) where i is the imaginary unit.

Original entry on oeis.org

1, -1, -5, -5, 19, 73, -331, -2795, 18265, 58643, -141349, -4197973, 1035215, 61269445, -9158903, -1495930487, -34376687, 26949145375, 33594289475, -1013112936505, -4905856636525, 459074207581145, 1713253866399725, -6497000065206625, -51270656805872335, 239235470859971731
Offset: 1

Views

Author

Hugo Pfoertner, Feb 22 2024

Keywords

Examples

			   n  a(n)
      A370547(n)      A370549(n)
          / A370548(n)      / A370550(n)
   1     1/1              +1/1     *i
   2    -1/2              +3/2     *i
   3    -5/3              +0/1     *i
   4    -5/12             -5/3     *i
   5    19/12             -3/4     *i
   6    73/72            +35/24    *i
   7  -331/252           +11/9     *i
   8 -2795/2016          -65/56    *i
   9 18265/18144       -3055/2016  *i
  10 58643/36288       +4433/5184  *i
		

Crossrefs

Programs

  • PARI
    a370547(n) = numerator(real(prod(k=1,n,1/k+I)))
    
  • Python
    from math import factorial, gcd
    from sympy.functions.combinatorial.numbers import stirling
    def A370547(n): return (a:=sum(stirling(n+1,n+1-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n+1>>1)+1)))//gcd(a,factorial(n)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = numerator of A105750(n)/n!. - Chai Wah Wu, Feb 22 2024

A370548 a(n) is the denominator of the real part of Product_{k=1..n} (1/k + i) where i is the imaginary unit.

Original entry on oeis.org

1, 2, 3, 12, 12, 72, 252, 2016, 18144, 36288, 199584, 2395008, 2395008, 33530112, 50295168, 804722688, 804722688, 14485008384, 137607579648, 550430318592, 11559036690432, 254298807189504, 2924436282679296, 3694024778121216, 70186470784303104, 140372941568606208
Offset: 1

Views

Author

Hugo Pfoertner, Feb 22 2024

Keywords

Examples

			See A370547.
		

Crossrefs

Programs

  • PARI
    a370548(n) = denominator(real(prod(k=1, n, 1/k+I)))
    
  • Python
    from math import factorial, gcd
    from sympy.functions.combinatorial.numbers import stirling
    def A370548(n): return (a:=factorial(n))//gcd(a,sum(stirling(n+1,n+1-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n+1>>1)+1))) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = denominator of A105750(n)/n!. - Chai Wah Wu, Feb 22 2024

A370549 a(n) is the numerator of the imaginary part of Product_{k=1..n} (1/k + i) where i is the imaginary unit.

Original entry on oeis.org

1, 3, 0, -5, -3, 35, 11, -65, -3055, 4433, 2561, -18863, -614635, 14705, 3871801, -6702403, -23794993, -21392575, 1677354925, 2206770805, -30432904645, -617315066615, 2099373575975, 551582580432325, -11053607615333933, -180184164588301, 4198057769186443, 435884809756010315
Offset: 1

Views

Author

Hugo Pfoertner, Feb 22 2024

Keywords

Examples

			See A370547.
		

Crossrefs

Programs

  • PARI
    a370549(n) = numerator(imag(prod(k=1, n, 1/k+I)))
    
  • Python
    from math import factorial, gcd
    from sympy.functions.combinatorial.numbers import stirling
    def A370549(n): return (a:=sum(stirling(n+1,n-(k<<1),kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)))//gcd(a,factorial(n)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = numerator of A105751(n)/n!. - Chai Wah Wu, Feb 22 2024

A370555 a(n) is the numerator of f(n)*conj(f(n)), where f(n) = Product_{k=1..n} (1/k + i), i is the imaginary unit, and conj(z) is the complex conjugate of z.

Original entry on oeis.org

2, 5, 25, 425, 221, 8177, 204425, 13287625, 544792625, 2200962205, 134258694505, 19467510703225, 9791351537125, 1928896252813625, 8718611062717585, 2240683043118419345, 1124218135820660225, 365370894141714573125, 66132131839650337735625, 1060759394707991417279425
Offset: 1

Views

Author

Hugo Pfoertner, Feb 23 2024

Keywords

Comments

f(n) may also be chosen as Product_{k=1..n} (1 + i/k) without changing the result.

Crossrefs

A370556 are the corresponding denominators.

Programs

  • PARI
    a370555(n) = my (f(n)=prod(k=1, n, 1/k+I)); numerator(f(n)*conj(f(n)))

A370556 a(n) is the denominator of f(n)*conj(f(n)), where f(n) = Product_{k=1..n} (1/k + i), i is the imaginary unit, and conj(z) is the complex conjugate of z.

Original entry on oeis.org

1, 2, 9, 144, 72, 2592, 63504, 4064256, 164602368, 658409472, 39833773056, 5736063320064, 2868031660032, 562134205366272, 2529603924148224, 647578604581945344, 323789302290972672, 104907733942275145728, 18935845976580663803904, 302973535625290620862464, 66805664605376581900173312
Offset: 1

Views

Author

Hugo Pfoertner, Feb 23 2024

Keywords

Crossrefs

A370555 are the corresponding numerators.

Programs

  • PARI
    a370556(n) = my (f(n)=prod(k=1, n, 1/k + I)); denominator(f(n)*conj(f(n)))
Showing 1-5 of 5 results.