cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A370551 a(n) is the numerator of the real part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit.

Original entry on oeis.org

1, 1, 0, -5, -3, -73, -11, -2795, -3055, -58643, -2561, -4197973, -614635, -61269445, -3871801, -1495930487, -23794993, -26949145375, -1677354925, -1013112936505, -30432904645, -459074207581145, -2099373575975, -6497000065206625, -11053607615333933, -239235470859971731
Offset: 1

Views

Author

Hugo Pfoertner, Feb 22 2024

Keywords

Examples

			   n  A370551(n)      A370553(n)
           / A370552(n)     / A370554(n)
   1      1/1             +1/1     *i
   2      1/2             +3/2     *i
   3      0/1             +5/3     *i
   4     -5/12            +5/3     *i
   5     -3/4            +19/12    *i
   6    -73/72           +35/24    *i
   7    -11/9           +331/252   *i
   8  -2795/2016         +65/56    *i
   9  -3055/2016      +18265/18144 *i
  10 -58643/36288      +4433/5184  *i
		

Crossrefs

Programs

  • PARI
    a370551(n) = numerator(real(prod(k=1, n, 1+I/k)))
    
  • Python
    from math import factorial, gcd
    from sympy.functions.combinatorial.numbers import stirling
    def A370551(n): return (a:=sum(stirling(n+1,(k<<1)+1,kind=1)*(-1 if k&1 else 1) for k in range((n>>1)+1)))//gcd(a,factorial(n)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = numerator of A231530(n)/n!. - Chai Wah Wu, Feb 22 2024

A370553 a(n) is the numerator of the imaginary part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit.

Original entry on oeis.org

1, 3, 5, 5, 19, 35, 331, 65, 18265, 4433, 141349, 18863, 1035215, 14705, 9158903, 6702403, -34376687, -21392575, -33594289475, -2206770805, -4905856636525, -617315066615, -1713253866399725, -551582580432325, -51270656805872335, -180184164588301, -1630191679256007299
Offset: 1

Views

Author

Hugo Pfoertner, Feb 22 2024

Keywords

Examples

			See A370551.
		

Crossrefs

Programs

  • PARI
    a370553(n) = numerator(imag(prod(k=1, n, 1+I/k)))
    
  • Python
    from math import factorial, gcd
    from sympy.functions.combinatorial.numbers import stirling
    def A370553(n): return (a:=sum(stirling(n+1,k<<1,kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1)))//gcd(a,factorial(n)) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = numerator of A231531(n)/n!. - Chai Wah Wu, Feb 22 2024

A370554 a(n) is the denominator of the imaginary part of Product_{k=1..n} (1 + i/k) where i is the imaginary unit.

Original entry on oeis.org

1, 2, 3, 3, 12, 24, 252, 56, 18144, 5184, 199584, 33264, 2395008, 48384, 50295168, 100590336, 804722688, 146313216, 137607579648, 6552741888, 11559036690432, 1216740704256, 2924436282679296, 835553223622656, 70186470784303104, 226043384168448, 1895034711176183808
Offset: 1

Views

Author

Hugo Pfoertner, Feb 22 2024

Keywords

Examples

			See A370551.
		

Crossrefs

Programs

  • PARI
    a370554(n) = denominator(imag(prod(k=1, n, 1+I/k)))
    
  • Python
    from math import factorial, gcd
    from sympy.functions.combinatorial.numbers import stirling
    def A370554(n): return (a:=factorial(n))//gcd(a,sum(stirling(n+1,k<<1,kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1))) # Chai Wah Wu, Feb 22 2024

Formula

a(n) = denominator of A231531(n)/n!. - Chai Wah Wu, Feb 22 2024

A370555 a(n) is the numerator of f(n)*conj(f(n)), where f(n) = Product_{k=1..n} (1/k + i), i is the imaginary unit, and conj(z) is the complex conjugate of z.

Original entry on oeis.org

2, 5, 25, 425, 221, 8177, 204425, 13287625, 544792625, 2200962205, 134258694505, 19467510703225, 9791351537125, 1928896252813625, 8718611062717585, 2240683043118419345, 1124218135820660225, 365370894141714573125, 66132131839650337735625, 1060759394707991417279425
Offset: 1

Views

Author

Hugo Pfoertner, Feb 23 2024

Keywords

Comments

f(n) may also be chosen as Product_{k=1..n} (1 + i/k) without changing the result.

Crossrefs

A370556 are the corresponding denominators.

Programs

  • PARI
    a370555(n) = my (f(n)=prod(k=1, n, 1/k+I)); numerator(f(n)*conj(f(n)))

A370556 a(n) is the denominator of f(n)*conj(f(n)), where f(n) = Product_{k=1..n} (1/k + i), i is the imaginary unit, and conj(z) is the complex conjugate of z.

Original entry on oeis.org

1, 2, 9, 144, 72, 2592, 63504, 4064256, 164602368, 658409472, 39833773056, 5736063320064, 2868031660032, 562134205366272, 2529603924148224, 647578604581945344, 323789302290972672, 104907733942275145728, 18935845976580663803904, 302973535625290620862464, 66805664605376581900173312
Offset: 1

Views

Author

Hugo Pfoertner, Feb 23 2024

Keywords

Crossrefs

A370555 are the corresponding numerators.

Programs

  • PARI
    a370556(n) = my (f(n)=prod(k=1, n, 1/k + I)); denominator(f(n)*conj(f(n)))
Showing 1-5 of 5 results.