A370582 Number of subsets of {1..n} such that it is possible to choose a different prime factor of each element.
1, 1, 2, 4, 6, 12, 20, 40, 52, 72, 116, 232, 320, 640, 1020, 1528, 1792, 3584, 4552, 9104, 12240, 17840, 27896, 55792, 67584, 83968, 130656, 150240, 198528, 397056, 507984, 1015968, 1115616, 1579168, 2438544, 3259680, 3730368, 7460736, 11494656, 16145952, 19078464, 38156928
Offset: 0
Keywords
Examples
The a(0) = 1 through a(6) = 20 subsets: {} {} {} {} {} {} {} {2} {2} {2} {2} {2} {3} {3} {3} {3} {2,3} {4} {4} {4} {2,3} {5} {5} {3,4} {2,3} {6} {2,5} {2,3} {3,4} {2,5} {3,5} {2,6} {4,5} {3,4} {2,3,5} {3,5} {3,4,5} {3,6} {4,5} {4,6} {5,6} {2,3,5} {2,5,6} {3,4,5} {3,5,6} {4,5,6}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]
Formula
a(p) = 2 * a(p-1) for prime p. - David A. Corneth, Feb 25 2024
a(n) = 2^n - A370583(n).
Extensions
a(19) from David A. Corneth, Feb 25 2024
a(20)-a(41) from Alois P. Heinz, Feb 25 2024