A370583 Number of subsets of {1..n} such that it is not possible to choose a different prime factor of each element.
0, 1, 2, 4, 10, 20, 44, 88, 204, 440, 908, 1816, 3776, 7552, 15364, 31240, 63744, 127488, 257592, 515184, 1036336, 2079312, 4166408, 8332816, 16709632, 33470464, 66978208, 134067488, 268236928, 536473856, 1073233840, 2146467680, 4293851680, 8588355424, 17177430640
Offset: 0
Keywords
Examples
The a(0) = 0 through a(5) = 20 subsets: . {1} {1} {1} {1} {1} {1,2} {1,2} {1,2} {1,2} {1,3} {1,3} {1,3} {1,2,3} {1,4} {1,4} {2,4} {1,5} {1,2,3} {2,4} {1,2,4} {1,2,3} {1,3,4} {1,2,4} {2,3,4} {1,2,5} {1,2,3,4} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,4,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} {1,2,3,4,5}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]
Formula
a(n) = 2^n - A370582(n).
Extensions
a(19)-a(34) from Alois P. Heinz, Feb 27 2024