A370588 Number of subsets of {1..n} containing n such that only one set can be obtained by choosing a different prime factor of each element.
0, 0, 1, 2, 2, 6, 6, 18, 12, 20, 36, 104, 76, 284, 320, 408, 252, 1548, 872, 3968, 2800, 4704, 8568, 24008, 10832, 14832, 40688, 18240, 43632, 176240, 97344, 449824, 95328, 404992, 760752, 698864, 436464, 3296048, 3564576, 4057904, 2677776, 16892352, 8676576
Offset: 0
Keywords
Examples
The a(0) = 0 through a(8) = 12 subsets: . . {2} {3} {4} {5} {2,6} {7} {8} {2,3} {3,4} {2,5} {3,6} {2,7} {3,8} {3,5} {4,6} {3,7} {5,8} {4,5} {2,5,6} {4,7} {6,8} {2,3,5} {3,5,6} {5,7} {7,8} {3,4,5} {4,5,6} {2,3,7} {3,5,8} {2,5,7} {3,7,8} {2,6,7} {5,6,8} {3,4,7} {5,7,8} {3,5,7} {6,7,8} {3,6,7} {3,5,7,8} {4,5,7} {5,6,7,8} {4,6,7} {2,3,5,7} {2,5,6,7} {3,4,5,7} {3,5,6,7} {4,5,6,7}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==1&]],{n,0,10}]
Extensions
More terms from Jinyuan Wang, Mar 28 2025
Comments