A370586
Number of subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).
Original entry on oeis.org
0, 0, 1, 2, 2, 6, 8, 20, 12, 20, 44, 116, 88, 320, 380, 508, 264, 1792, 968, 4552, 3136, 5600, 10056, 27896, 11792, 16384, 46688, 19584, 48288, 198528, 110928, 507984, 99648, 463552, 859376, 821136, 470688, 3730368, 4033920, 4651296, 2932512, 19078464
Offset: 0
The a(0) = 0 through a(7) = 20 subsets:
. . {2} {3} {4} {5} {6} {7}
{2,3} {3,4} {2,5} {2,6} {2,7}
{3,5} {3,6} {3,7}
{4,5} {4,6} {4,7}
{2,3,5} {5,6} {5,7}
{3,4,5} {2,5,6} {6,7}
{3,5,6} {2,3,7}
{4,5,6} {2,5,7}
{2,6,7}
{3,4,7}
{3,5,7}
{3,6,7}
{4,5,7}
{4,6,7}
{5,6,7}
{2,3,5,7}
{2,5,6,7}
{3,4,5,7}
{3,5,6,7}
{4,5,6,7}
Maximal choosable sets are counted by
A370585.
The complement is counted by
A370587.
For a unique choice we have
A370588.
For binary indices instead of prime factors we have
A370639.
A355741 counts choices of a prime factor of each prime index.
A368098 counts choosable unlabeled multiset partitions, complement
A368097.
Cf.
A000040,
A000720,
A005117,
A045778,
A133686,
A355739,
A355744,
A355745,
A367771,
A367905,
A370636.
-
Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]
A370587
Number of subsets of {1..n} containing n such that it is not possible to choose a different prime factor of each element (non-choosable).
Original entry on oeis.org
0, 1, 1, 2, 6, 10, 24, 44, 116, 236, 468, 908, 1960, 3776, 7812, 15876, 32504, 63744, 130104, 257592, 521152, 1042976, 2087096, 4166408, 8376816, 16760832, 33507744, 67089280, 134169440, 268236928, 536759984, 1073233840, 2147384000, 4294503744, 8589075216, 17179048048
Offset: 0
The a(0) = 0 through a(5) = 10 subsets:
. {1} {1,2} {1,3} {1,4} {1,5}
{1,2,3} {2,4} {1,2,5}
{1,2,4} {1,3,5}
{1,3,4} {1,4,5}
{2,3,4} {2,4,5}
{1,2,3,4} {1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The complement is counted by
A370586.
For a unique choice we have
A370588.
For binary indices instead of factors we have
A370639, complement
A370589.
A355741 counts choices of a prime factor of each prime index.
A368098 counts choosable unlabeled multiset partitions, complement
A368097.
A370585 counts maximal choosable sets.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]
A370590
Number of maximal subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).
Original entry on oeis.org
0, 0, 1, 1, 1, 2, 3, 5, 2, 4, 14, 25, 13, 38, 46, 66, 28, 178, 57, 235, 106, 238, 656, 1235, 288, 445, 2192, 664, 2016, 6840, 2300, 9140, 888, 6236, 17692, 14724, 7320, 56000, 60472, 70252, 37160, 223884, 66428, 290312, 113172, 80544, 517392, 1001420, 114336
Offset: 0
The a(0) = 0 through a(10) = 14 subsets (A = 10):
. . 2 23 34 235 256 2357 3578 2579 237A
345 356 2567 5678 4579 267A
456 3457 5679 279A
3567 5789 347A
4567 357A
367A
378A
467A
479A
567A
579A
678A
679A
789A
A355741 counts choices of a prime factor of each prime index.
A368098 counts choosable unlabeled multiset partitions, complement
A368097.
-
Table[Length[Select[Subsets[Range[n],{PrimePi[n]}],MemberQ[#,n]&&Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]
Showing 1-3 of 3 results.
Comments