cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370616 Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^n.

Original entry on oeis.org

1, 0, 2, 3, 14, 35, 125, 371, 1238, 3909, 12847, 41580, 136577, 447187, 1473341, 4855703, 16053830, 53138243, 176233967, 585202261, 1945964079, 6478043120, 21588979876, 72016891508, 240452892569, 803489258285, 2686964354375, 8991840800136, 30110638705889
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[-1 - k + n, -2*k + n] Binomial[-1 + k + n, k], {k, 0, n/2}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2) / (1-x) ).
From Peter Bala, 26 Jul 2025: (Start)
a(n) = n * hypergeom([1 + n, 1 - n/2, 3/2 - n/2], [2, 2 - n], -4) for n >= 3.
P-recursive: 5*n*(74*n^3-493*n^2+1075*n-766)*(n-1)*a(n) = 2*(n-1)*(296*n^4-2120*n^3+5393*n^2-5716*n+2100)*a(n-1) + 2*(1184*n^5-10256*n^4+34088*n^3-53995*n^2+40397*n-11250)*a(n-2) - 2*(n-3)*(2*n-5)*(74*n^3-271*n^2+311*n-110)*a(n-3) with a(0) = 1, a(1) = 0 and a(2) = 2.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k. (End)
a(n) ~ sqrt(1/12 + sqrt(10/37)*(sin(arcsin((13*sqrt(37/10))/40)/3)/3)) * (8*((1 + sqrt(34)*cos(arccos(2461/(1088*sqrt(34)))/3))/15))^n / sqrt(Pi*n). - Vaclav Kotesovec, Jul 30 2025