A370638 Number of subsets of {1..n} such that a unique set can be obtained by choosing a different binary index of each element.
1, 2, 4, 6, 12, 19, 30, 45, 90, 147, 230, 343, 504, 716, 994, 1352, 2704, 4349, 6469, 9162, 12585, 16862, 22122, 28617, 36653, 46431, 58075, 72097, 88456, 107966, 130742, 157647, 315294, 494967, 704753, 950080, 1234301, 1565165, 1945681, 2387060, 2890368, 3470798
Offset: 0
Keywords
Examples
The set {3,4} has binary indices {{1,2},{3}}, with two choices {1,3}, {2,3}, so is not counted under a(4). The a(0) = 1 through a(5) = 19 subsets: {} {} {} {} {} {} {1} {1} {1} {1} {1} {2} {2} {2} {2} {1,2} {1,2} {4} {4} {1,3} {1,2} {1,2} {2,3} {1,3} {1,3} {1,4} {1,4} {2,3} {1,5} {2,4} {2,3} {1,2,4} {2,4} {1,3,4} {4,5} {2,3,4} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}
Links
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Table[Length[Select[Subsets[Range[n]],Length[Union[Sort /@ Select[Tuples[bpe/@#],UnsameQ@@#&]]]==1&]],{n,0,10}]
Formula
a(2^n - 1) = A370818(n).
Extensions
More terms from Jinyuan Wang, Mar 28 2025
Comments