A370639 Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.
0, 1, 2, 3, 7, 10, 15, 22, 61, 81, 112, 154, 207, 276, 355, 464, 1771, 2166, 2724, 3445, 4246, 5292, 6420, 7922, 9586, 11667, 13768, 16606, 19095, 22825, 26498, 31421, 187223, 213684, 247670, 289181, 331301, 385079, 440411, 510124, 575266, 662625, 747521
Offset: 0
Keywords
Examples
The a(0) = 0 through a(6) = 15 subsets: . {1} {2} {3} {4} {5} {6} {1,2} {1,3} {1,4} {1,5} {1,6} {2,3} {2,4} {2,5} {2,6} {3,4} {3,5} {3,6} {1,2,4} {4,5} {4,6} {1,3,4} {1,2,5} {5,6} {2,3,4} {1,3,5} {1,2,6} {2,3,5} {1,3,6} {2,4,5} {1,4,6} {3,4,5} {1,5,6} {2,3,6} {2,5,6} {3,4,6} {3,5,6} {4,5,6}
Links
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
Formula
First differences of A370636.
Extensions
a(19)-a(42) from Alois P. Heinz, Mar 09 2024
Comments