A370641 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.
0, 1, 1, 2, 3, 5, 9, 15, 32, 45, 67, 98, 141, 197, 263, 358, 1201, 1493, 1920, 2482, 3123, 3967, 4884, 6137, 7584, 9369, 11169, 13664, 15818, 19152, 22418, 26905, 151286, 173409, 202171, 237572, 273651, 320040, 367792, 428747, 485697, 562620, 637043, 734738, 815492
Offset: 0
Keywords
Examples
The a(0) = 0 through a(7) = 15 subsets: . {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,2,6} {1,2,7} {2,3} {1,3,4} {1,3,5} {1,3,6} {1,3,7} {2,3,4} {2,3,5} {1,4,6} {1,4,7} {2,4,5} {1,5,6} {1,5,7} {3,4,5} {2,3,6} {1,6,7} {2,5,6} {2,3,7} {3,4,6} {2,4,7} {3,5,6} {2,5,7} {4,5,6} {2,6,7} {3,4,7} {3,5,7} {3,6,7} {4,5,7} {4,6,7} {5,6,7}
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}],MemberQ[#,n] && Length[Union[Sort/@Select[Tuples[bpe/@#], UnsameQ@@#&]]]>0&]],{n,0,25}]
Extensions
More terms from Jinyuan Wang, Mar 28 2025
Comments