A370703 Triangle read by rows: T(n, k) = denominator([x^k] n! [t^n] (t/2 + sqrt(1 + (t/2)^2))^(2*x)).
1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 64, 1, 16, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 256, 1, 16, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1024, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 1; [2] 1, 1, 1; [3] 1, 4, 1, 1; [4] 1, 1, 1, 1, 1; [5] 1, 16, 1, 2, 1, 1; [6] 1, 1, 1, 1, 1, 1, 1; [7] 1, 64, 1, 16, 1, 4, 1, 1; [8] 1, 1, 1, 1, 1, 1, 1, 1, 1; [9] 1, 256, 1, 16, 1, 8, 1, 1, 1, 1;
Crossrefs
Cf. A370705 (numerators).
Programs
-
Maple
gf := (t/2 + sqrt(1 + (t/2)^2))^(2*x): ser := series(gf, t, 20): ct := n -> n!*coeff(ser, t, n): T := (n, k) -> denom(coeff(ct(n),x,k)): seq(seq(T(n, k), k = 0..n), n = 0..11);