cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A370704 a(n) = Sum_{k=0..n} k!*binomial(n, k)*Pochhammer(n, k). Row sums of A370707.

Original entry on oeis.org

1, 2, 17, 442, 23297, 2029226, 262403857, 47086207442, 11184381577217, 3395509635512242, 1282288601819184401, 589443236677619916362, 324023682525763528809217, 209882061169585594259778842, 158200294157346855067204600337, 137282439597406466709932610293026
Offset: 0

Views

Author

Peter Luschny, Feb 28 2024

Keywords

Crossrefs

Cf. A370707.

Programs

  • Maple
    a := n -> local k, j; add((-1)^k * mul((j - n)*(j + n), j = 0..k-1), k = 0..n):
    seq(a(n), n = 0..15);
  • Mathematica
    A370704[n_] := Sum[k!*Binomial[n, k]*Pochhammer[n, k], {k, 0, n}];
    Array[A370704, 20, 0] (* Paolo Xausa, Mar 07 2024 *)

Formula

a(n) = Sum_{k=0..n} (-1)^k*Product_{j=0..k-1} (j - n)*(j + n).
a(n) ~ sqrt(Pi) * 4^n * n^(2*n + 1/2) / exp(2*n). - Vaclav Kotesovec, Mar 12 2024

A380113 Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 10, 15, 6, 1, 35, 56, 28, 8, 1, 126, 210, 120, 45, 10, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1
Offset: 0

Views

Author

Peter Luschny, Jan 12 2025

Keywords

Comments

The inverse matrix of A370707 is a rational matrix and the normalization serves to make it a matrix over the integers. Note that the normalization factor A370707(n, n) = FallingFactorial(n, n) * RisingFactorial(n, n) extends A002674 to n = 0.

Examples

			Triangle starts:
  [0] [    1]
  [1] [    1,     1]
  [2] [    3,     4,     1]
  [3] [   10,    15,     6,     1]
  [4] [   35,    56,    28,     8,    1]
  [5] [  126,   210,   120,    45,   10,    1]
  [6] [  462,   792,   495,   220,   66,   12,   1]
  [7] [ 1716,  3003,  2002,  1001,  364,   91,  14,   1]
  [8] [ 6435, 11440,  8008,  4368, 1820,  560, 120,  16,  1]
  [9] [24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1]
.
Row 3 of the matrix inverse of the central factorials is [-1/36, 1/24, -1/60, 1/360]. Normalized with (-1)^(n-k)*360 gives row 3 of T.
		

Crossrefs

Variant: A094527.
Cf. A370707, A002674, A008311, A088218 and A110556 (column 0), A081294 (row sums), A000007 (alternating row sums), A005810 (central terms).

Programs

  • Maple
    T := (n, k) -> if n = k then 1 elif k = 0 then binomial(2*n, n - k)/2 else binomial(2*n, n - k) fi: seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    A380113[n_, k_] := Binomial[2*n, n - k]/(Boole[k == 0 && n > 0] + 1);
    Table[A380113[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
  • SageMath
    def Trow(n):
        def cf(n, k): return falling_factorial(n, k)*rising_factorial(n, k)
        def w(n): return factorial(n)*rising_factorial(n, n)
        m = matrix(QQ, n + 1, lambda x, y: cf(x, y)).inverse()
        return [(-1)^(n-k)*w(n)*m[n, k] for k in range(n+1)]
    for n in range(10): print(Trow(n))

Formula

T(n, k) = (-1)^(n - k) * ff(n, n) * rf(n, n) * M^(-1)(ff(n, k) * rf(n, k)) where ff denotes the falling factorial, rf the rising factorial and M^(-1)(t(n, k)) the matrix inverse to the matrix with entries t(n, k).
T(n, k) = binomial(2*n, n - k) for 0 < k < n. T(n, n) = 1; T(n, 0) = (-1)^n*binomial(-n, n).
Sum_{k=0..n} T(n, k)*cos(k*x) = 2^(n-1)*(cos(x)+1)^n. (After Philippe Deléham in A008311).

A370706 Triangle read by rows: T(n, k) = binomial(n, k) * Pochhammer(n, k).

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 1, 9, 36, 60, 1, 16, 120, 480, 840, 1, 25, 300, 2100, 8400, 15120, 1, 36, 630, 6720, 45360, 181440, 332640, 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640, 1, 64, 2016, 40320, 554400, 5322240, 34594560, 138378240, 259459200
Offset: 0

Views

Author

Peter Luschny, Feb 28 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1,  1;
  [2] 1,  4,    6;
  [3] 1,  9,   36,    60;
  [4] 1, 16,  120,   480,    840;
  [5] 1, 25,  300,  2100,   8400,   15120;
  [6] 1, 36,  630,  6720,  45360,  181440,  332640;
  [7] 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640;
		

Crossrefs

Cf. A370707, A000407 (main diagonal), A278070 (row sums).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*pochhammer(n, k):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_, k_] := Binomial[n, k] Pochhammer[n, k];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = A370707(n, k) / k!.
T(n, n) = Pochhammer(n, n) for n >= 0 (which is different from A000407(n)).

A370983 Triangle read by rows: T(n, k) = (n + k - 1)! / (k!*(n - k)!) if k > 0 and T(n, 0) = 0^n.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 3, 12, 20, 0, 4, 30, 120, 210, 0, 5, 60, 420, 1680, 3024, 0, 6, 105, 1120, 7560, 30240, 55440, 0, 7, 168, 2520, 25200, 166320, 665280, 1235520, 0, 8, 252, 5040, 69300, 665280, 4324320, 17297280, 32432400
Offset: 0

Views

Author

Peter Luschny, Mar 07 2024

Keywords

Comments

A signed version of Catalan's triangle (version A128899) can be generated as the scaled inverse of this triangle. The scaled inverse of T is the inverse I of T post-processed by I(n, k) -> I(n, k)/I(n, n).

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 2,   3;
[3] 0, 3,  12,   20;
[4] 0, 4,  30,  120,   210;
[5] 0, 5,  60,  420,  1680,   3024;
[6] 0, 6, 105, 1120,  7560,  30240,  55440;
[7] 0, 7, 168, 2520, 25200, 166320, 665280, 1235520;
		

Crossrefs

Cf. A006963 (main diagonal), A001813 (subdiagonal), A371028 (row sums).

Programs

  • Maple
    T := (n, k) -> `if`(k = 0, k^n, (n + k - 1)! / (k!*(n - k)!)):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    A370983 := (n, k) -> local j; ifelse(n = 0, 1, ifelse(k = 0, 0,
    (-1)^k*mul((j - n) * (j + n) / (j + 1), j = 0..k - 1) / n)):
  • Mathematica
    T[n_, k_] := If[n == 0, 1, If[k == 0, 0, (n + k - 1)! / (k! * (n - k)!)]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
  • Python
    from math import prod
    def T(n, k):
        if n == 0: return 1
        if k == 0: return 0
        return (-1)**k * prod((j - n) * (j + n) / (j + 1) for j in range(k)) / n
    for n in range(7): print([T(n, k) for k in range(n + 1)])
  • SageMath
    def A370983(n, k):
        if k  > n: return 0
        if n == 0: return 1
        if k == 0: return 0
        return binomial(n, k) * rising_factorial(n, k) // n
    for n in range(7): print([A370983(n, k) for k in range(n + 1)])
    
  • SageMath
    # Added for the sake of reference only.
    # For example ScaledInv(A370983, 7) gives the first seven rows of A128899.
    def ScaledInv(T, dim): # We assume T(n, n) != 0 for all n.
        M = matrix(QQ, dim, T).inverse()
        for n in range(dim):
            c = M[n][n]
            M[n] = [M.row(n)[k] / c for k in range(dim)]
        return M
    

Formula

Assume n > 0 and k > 0 for the next four formulas:
T(n, k) = ((-1)^k / n) * Product_{j=0..k-1} ((j - n)*(j + n)/(j + 1)).
T(n, k) = binomial(n, k) * Pochhammer(n, k) / n.
T(n, k) = A370706(n, k) / n.
T(n, k) = A370707(n, k) / (n*k!).
Showing 1-4 of 4 results.