A370704
a(n) = Sum_{k=0..n} k!*binomial(n, k)*Pochhammer(n, k). Row sums of A370707.
Original entry on oeis.org
1, 2, 17, 442, 23297, 2029226, 262403857, 47086207442, 11184381577217, 3395509635512242, 1282288601819184401, 589443236677619916362, 324023682525763528809217, 209882061169585594259778842, 158200294157346855067204600337, 137282439597406466709932610293026
Offset: 0
-
a := n -> local k, j; add((-1)^k * mul((j - n)*(j + n), j = 0..k-1), k = 0..n):
seq(a(n), n = 0..15);
-
A370704[n_] := Sum[k!*Binomial[n, k]*Pochhammer[n, k], {k, 0, n}];
Array[A370704, 20, 0] (* Paolo Xausa, Mar 07 2024 *)
A380113
Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n).
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 10, 15, 6, 1, 35, 56, 28, 8, 1, 126, 210, 120, 45, 10, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1
Offset: 0
Triangle starts:
[0] [ 1]
[1] [ 1, 1]
[2] [ 3, 4, 1]
[3] [ 10, 15, 6, 1]
[4] [ 35, 56, 28, 8, 1]
[5] [ 126, 210, 120, 45, 10, 1]
[6] [ 462, 792, 495, 220, 66, 12, 1]
[7] [ 1716, 3003, 2002, 1001, 364, 91, 14, 1]
[8] [ 6435, 11440, 8008, 4368, 1820, 560, 120, 16, 1]
[9] [24310, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1]
.
Row 3 of the matrix inverse of the central factorials is [-1/36, 1/24, -1/60, 1/360]. Normalized with (-1)^(n-k)*360 gives row 3 of T.
-
T := (n, k) -> if n = k then 1 elif k = 0 then binomial(2*n, n - k)/2 else binomial(2*n, n - k) fi: seq(seq(T(n, k), k = 0..n), n = 0..9);
-
A380113[n_, k_] := Binomial[2*n, n - k]/(Boole[k == 0 && n > 0] + 1);
Table[A380113[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
-
def Trow(n):
def cf(n, k): return falling_factorial(n, k)*rising_factorial(n, k)
def w(n): return factorial(n)*rising_factorial(n, n)
m = matrix(QQ, n + 1, lambda x, y: cf(x, y)).inverse()
return [(-1)^(n-k)*w(n)*m[n, k] for k in range(n+1)]
for n in range(10): print(Trow(n))
A370706
Triangle read by rows: T(n, k) = binomial(n, k) * Pochhammer(n, k).
Original entry on oeis.org
1, 1, 1, 1, 4, 6, 1, 9, 36, 60, 1, 16, 120, 480, 840, 1, 25, 300, 2100, 8400, 15120, 1, 36, 630, 6720, 45360, 181440, 332640, 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640, 1, 64, 2016, 40320, 554400, 5322240, 34594560, 138378240, 259459200
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 4, 6;
[3] 1, 9, 36, 60;
[4] 1, 16, 120, 480, 840;
[5] 1, 25, 300, 2100, 8400, 15120;
[6] 1, 36, 630, 6720, 45360, 181440, 332640;
[7] 1, 49, 1176, 17640, 176400, 1164240, 4656960, 8648640;
-
T := (n, k) -> binomial(n, k)*pochhammer(n, k):
seq(seq(T(n, k), k = 0..n), n = 0..8);
-
T[n_, k_] := Binomial[n, k] Pochhammer[n, k];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
A370983
Triangle read by rows: T(n, k) = (n + k - 1)! / (k!*(n - k)!) if k > 0 and T(n, 0) = 0^n.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 3, 12, 20, 0, 4, 30, 120, 210, 0, 5, 60, 420, 1680, 3024, 0, 6, 105, 1120, 7560, 30240, 55440, 0, 7, 168, 2520, 25200, 166320, 665280, 1235520, 0, 8, 252, 5040, 69300, 665280, 4324320, 17297280, 32432400
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 3;
[3] 0, 3, 12, 20;
[4] 0, 4, 30, 120, 210;
[5] 0, 5, 60, 420, 1680, 3024;
[6] 0, 6, 105, 1120, 7560, 30240, 55440;
[7] 0, 7, 168, 2520, 25200, 166320, 665280, 1235520;
-
T := (n, k) -> `if`(k = 0, k^n, (n + k - 1)! / (k!*(n - k)!)):
seq(seq(T(n, k), k = 0..n), n = 0..9);
A370983 := (n, k) -> local j; ifelse(n = 0, 1, ifelse(k = 0, 0,
(-1)^k*mul((j - n) * (j + n) / (j + 1), j = 0..k - 1) / n)):
-
T[n_, k_] := If[n == 0, 1, If[k == 0, 0, (n + k - 1)! / (k! * (n - k)!)]];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
-
from math import prod
def T(n, k):
if n == 0: return 1
if k == 0: return 0
return (-1)**k * prod((j - n) * (j + n) / (j + 1) for j in range(k)) / n
for n in range(7): print([T(n, k) for k in range(n + 1)])
-
def A370983(n, k):
if k > n: return 0
if n == 0: return 1
if k == 0: return 0
return binomial(n, k) * rising_factorial(n, k) // n
for n in range(7): print([A370983(n, k) for k in range(n + 1)])
-
# Added for the sake of reference only.
# For example ScaledInv(A370983, 7) gives the first seven rows of A128899.
def ScaledInv(T, dim): # We assume T(n, n) != 0 for all n.
M = matrix(QQ, dim, T).inverse()
for n in range(dim):
c = M[n][n]
M[n] = [M.row(n)[k] / c for k in range(dim)]
return M
Showing 1-4 of 4 results.
Comments