A370712 a(n) = 3^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/3).
1, 3, 0, 99, -270, 2430, -10287, 105462, -750141, 5702481, -42623901, 347424633, -2779077762, 22353287634, -181730796723, 1493711042589, -12321529794261, 102125312638713, -850797139405887, 7120067746384863, -59800770201017934, 503922807927384129, -4259721779079782751
Offset: 0
Keywords
Programs
-
Mathematica
nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax] nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] nmax = 30; CoefficientList[Series[(QPochhammer[-3, x]/4)^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
Formula
G.f.: Product_{k>=1} (1 + 3*(3*x)^k)^(1/3).
a(n) ~ (-1)^(n+1) * c * 9^n / n^(4/3), where c = QPochhammer(-1/3)^(1/3) / (3*Gamma(2/3)) = 0.26286302373105271371291957730496322329245126572...