cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A370710 a(n) = 3^n * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/3).

Original entry on oeis.org

1, 3, 27, 180, 1431, 10206, 83025, 641277, 5264109, 42896790, 357649587, 2989185039, 25284805857, 214547921451, 1832454271926, 15702526829196, 135091225972926, 1165383100947105, 10081310266960155, 87401262194470719, 759320707197024909, 6608561546767471227, 57610976508944343963
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 25; CoefficientList[Series[Product[1/(1-3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[(-2/QPochhammer[3,x])^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]

Formula

G.f.: Product_{k>=1} 1/(1 - 3*(3*x)^k)^(1/3).
a(n) ~ c * 9^n / n^(2/3), where c = 1 / (Gamma(1/3) * QPochhammer(1/3)^(1/3)) = 0.45283708537555770181385241925945547307046394744...

A370739 a(n) = 5^(2*n) * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/5).

Original entry on oeis.org

1, 15, -75, 35250, -1138125, 72645000, -3307996875, 244578890625, -15502648125000, 985908809765625, -63515254624218750, 4314500023927734375, -291905297026816406250, 19789483493484814453125, -1355414138248614990234375, 93666904586649390380859375, -6498800175020013123779296875
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2024

Keywords

Comments

In general, if d > 1, m > 1 and g.f. = Product_{k>=1} (1 + d*x^k)^(1/m), then a(n) ~ (-1)^(n+1) * QPochhammer(-1/d)^(1/m) * d^n / (m*Gamma(1 - 1/m) * n^(1 + 1/m)).

Crossrefs

Cf. A032308 (d=3,m=1), A370711 (d=3,m=2), A370712 (d=3,m=3), A370738 (d=3,m=4).
Cf. A032302 (d=2,m=1), A370709 (d=2,m=2), A370716 (d=2,m=3), A370736 (d=2,m=4), A370737 (d=2,m=5).
Cf. A000009 (d=1,m=1), A298994 (d=1,m=2), A303074 (d=1,m=3)

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1+3*x^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[1+3*(25*x)^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + 3*(25*x)^k)^(1/5).
a(n) ~ (-1)^(n+1) * QPochhammer(-1/3)^(1/5) * 75^n / (5 * Gamma(4/5) * n^(6/5)).

A370752 a(n) = 3^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/3).

Original entry on oeis.org

1, 6, 36, 360, 1998, 18792, 121176, 1123632, 7537860, 72078174, 510702408, 4896308088, 35923749480, 345406994280, 2600934294816, 24985346997888, 191735328374478, 1838307293836560, 14317601666954364, 136953233511162840, 1079293961918593800, 10299943344889922832
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Comments

In general, if d > 1, m >= 1 and g.f. = Product_{k>=1} ((1 + d*x^k)/(1 - d*x^k))^(1/m), then a(n) ~ QPochhammer(-1, 1/d)^(1/m) * d^n / (Gamma(1/m) * QPochhammer(1/d)^(1/m) * n^(1 - 1/m)).

Crossrefs

Cf. A303390 (d=3,m=1), A370751 (d=3,m=2), A370752 (d=3,m=3).
Cf. A261584 (d=2,m=1), A303346 (d=2,m=2), A370750 (d=2,m=3), A370749 (d=2,m=4).
Cf. A015128 (d=1,m=1), A303307 (d=1,m=2), A303342 (d=1,m=3).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k)/(1 - 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k)/(1 - 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 3*(3*x)^k)/(1 - 3*(3*x)^k))^(1/3).
a(n) ~ QPochhammer(-1, 1/3)^(1/3) * 9^n / (Gamma(1/3) * QPochhammer(1/3)^(1/3) * n^(2/3)).

A370738 a(n) = 8^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/4).

Original entry on oeis.org

1, 6, -6, 1428, -13146, 280788, -3785820, 93142824, -1851272826, 37533646212, -765409050420, 16617464296728, -357906128318628, 7730398360992840, -168750405673899000, 3719099270015849040, -82288133754592611642, 1828585054153956768612, -40828782977534929747524, 915461326204911371035320
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2024

Keywords

Crossrefs

Cf. A032308 (m=1), A370711 (m=2), A370712 (m=3), A370739 (m=5).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1+3*x^k, {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 8^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[1+3*(8*x)^k, {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + 3*(8*x)^k)^(1/4).
a(n) ~ (-1)^(n+1) * QPochhammer(-1/3)^(1/4) * 24^n / (4 * Gamma(3/4) * n^(5/4)).
Showing 1-4 of 4 results.