A370716
a(n) = 3^(2*n) * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/3).
Original entry on oeis.org
1, 6, 18, 1170, -1890, 133326, 101250, 20498994, -164656314, 3778220862, -28085954094, 771567716970, -10691904063114, 183594050113518, -2711145260068326, 49416883617381354, -789899109743435994, 13176840267952166070, -216403389726994588086, 3681309971143060236810
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^(2*Range[0, nmax])
nmax = 20; CoefficientList[Series[Product[(1 + 2*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
nmax = 20; CoefficientList[Series[(QPochhammer[-2, x]/3)^(1/3), {x, 0, nmax}], x] * 3^(2*Range[0, nmax])
A370732
a(n) = 4^n * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/4).
Original entry on oeis.org
1, 2, 18, 108, 822, 4796, 37492, 231704, 1738150, 11857004, 87262684, 617409128, 4638712124, 33724007896, 253800160808, 1894353653552, 14350905612038, 108412437326412, 827441075006796, 6308125533133896, 48388714839180756, 371391625244862600, 2860885559165073624
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[1/(1-2*x^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 4^Range[0, nmax]
nmax = 30; CoefficientList[Series[Product[1/(1-2*(4*x)^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]
A370735
a(n) = 5^(2*n) * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/5).
Original entry on oeis.org
1, 15, 1050, 52125, 3277500, 179801250, 11966690625, 738318187500, 49788716718750, 3314446448437500, 227432073022265625, 15631633385109375000, 1090877899335878906250, 76338563689129101562500, 5384934139819611328125000, 381204340327212964599609375, 27111589537137988341064453125
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[1/(1-3*(25*x)^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
A370733
a(n) = 5^(2*n) * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/5).
Original entry on oeis.org
1, 10, 550, 19750, 921250, 32011250, 1563143750, 58080093750, 2719958906250, 113913469531250, 5214823539843750, 228024893230468750, 10704801509316406250, 482674223446582031250, 22664252188144042968750, 1053427002068999511718750, 49776941230938518066406250
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1-2*x^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[1/(1-2*(25*x)^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
A370750
a(n) = 9^n * [x^n] Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^(1/3).
Original entry on oeis.org
1, 12, 180, 3852, 50436, 947052, 14087844, 245858652, 3531115620, 64019229660, 950199749748, 16959724619004, 256888616329044, 4642974930688812, 71716402072904724, 1308491345357401068, 20501966472318764388, 376230182366985289164, 5987314157007778195716, 110286515004790197907836
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - 2*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[(1 + 2*(9*x)^k)/(1 - 2*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
Showing 1-5 of 5 results.
Comments