cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370811 Numbers such that more than one set can be obtained by choosing a different divisor of each prime index.

Original entry on oeis.org

3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 111, 113, 114, 115, 117, 119
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2024

Keywords

Comments

A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798.

Examples

			The prime indices of 70 are {1,3,4}, with choices (1,3,4) and (1,3,2), so 70 is in the sequence.
The terms together with their prime indices begin:
     3: {2}      43: {14}        79: {22}       115: {3,9}
     5: {3}      46: {1,9}       83: {23}       117: {2,2,6}
     7: {4}      47: {15}        85: {3,7}      119: {4,7}
    11: {5}      49: {4,4}       86: {1,14}     122: {1,18}
    13: {6}      51: {2,7}       87: {2,10}     123: {2,13}
    14: {1,4}    53: {16}        89: {24}       127: {31}
    15: {2,3}    55: {3,5}       91: {4,6}      129: {2,14}
    17: {7}      57: {2,8}       93: {2,11}     130: {1,3,6}
    19: {8}      58: {1,10}      94: {1,15}     131: {32}
    21: {2,4}    59: {17}        95: {3,8}      133: {4,8}
    23: {9}      61: {18}        97: {25}       137: {33}
    26: {1,6}    65: {3,6}      101: {26}       138: {1,2,9}
    29: {10}     67: {19}       103: {27}       139: {34}
    31: {11}     69: {2,9}      105: {2,3,4}    141: {2,15}
    33: {2,5}    70: {1,3,4}    106: {1,16}     142: {1,20}
    35: {3,4}    71: {20}       107: {28}       143: {5,6}
    37: {12}     73: {21}       109: {29}       145: {3,10}
    38: {1,8}    74: {1,12}     111: {2,12}     146: {1,21}
    39: {2,6}    77: {4,5}      113: {30}       149: {35}
    41: {13}     78: {1,2,6}    114: {1,2,8}    151: {36}
		

Crossrefs

For no choices we have A355740, counted by A370320.
For at least one choice we have A368110, counted by A239312.
Partitions of this type are counted by A370803.
For a unique choice we have A370810, counted by A370595 and A370815.
A000005 counts divisors.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.
A370814 counts factorizations with choosable divisors, complement A370813.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]>1&]