A370811 Numbers such that more than one set can be obtained by choosing a different divisor of each prime index.
3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 111, 113, 114, 115, 117, 119
Offset: 1
Keywords
Examples
The prime indices of 70 are {1,3,4}, with choices (1,3,4) and (1,3,2), so 70 is in the sequence. The terms together with their prime indices begin: 3: {2} 43: {14} 79: {22} 115: {3,9} 5: {3} 46: {1,9} 83: {23} 117: {2,2,6} 7: {4} 47: {15} 85: {3,7} 119: {4,7} 11: {5} 49: {4,4} 86: {1,14} 122: {1,18} 13: {6} 51: {2,7} 87: {2,10} 123: {2,13} 14: {1,4} 53: {16} 89: {24} 127: {31} 15: {2,3} 55: {3,5} 91: {4,6} 129: {2,14} 17: {7} 57: {2,8} 93: {2,11} 130: {1,3,6} 19: {8} 58: {1,10} 94: {1,15} 131: {32} 21: {2,4} 59: {17} 95: {3,8} 133: {4,8} 23: {9} 61: {18} 97: {25} 137: {33} 26: {1,6} 65: {3,6} 101: {26} 138: {1,2,9} 29: {10} 67: {19} 103: {27} 139: {34} 31: {11} 69: {2,9} 105: {2,3,4} 141: {2,15} 33: {2,5} 70: {1,3,4} 106: {1,16} 142: {1,20} 35: {3,4} 71: {20} 107: {28} 143: {5,6} 37: {12} 73: {21} 109: {29} 145: {3,10} 38: {1,8} 74: {1,12} 111: {2,12} 146: {1,21} 39: {2,6} 77: {4,5} 113: {30} 149: {35} 41: {13} 78: {1,2,6} 114: {1,2,8} 151: {36}
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]>1&]
Comments