A370825 a(n) is the numerator of the ratio of winning probabilities in a game similar to A370823, but with a draw and single round odds A:B:draw of 3:2:1.
3, 2, 39, 4, 363, 26, 3279, 328, 29523, 1342, 11553, 292, 2391483, 1195742, 21523359, 126608, 193710243, 728234, 1743392199, 3169804, 15690529803, 341098474, 3004569537, 155181064, 1270932914163, 635466457082, 11438396227479, 39442745612, 102945566047323, 21563796826
Offset: 1
Examples
a(n)/A370826(n) for n=1..14: 3/2, 2, 39/14, 4, 363/62, 26/3, 3279/254, 328/17, 29523/1022, 1342/31, 11553/178, 292/3, 2391483/16382, 1195742/5461.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..2000
Crossrefs
Programs
-
Mathematica
Array[Numerator[3/4*(3^#-1)/(2^#-1)] &, 50] (* Paolo Xausa, Mar 11 2024 *)
-
PARI
a370825(n) = numerator((3/4) * (3^n - 1) / (2^n - 1));
-
Python
from math import gcd def A370825(n): return (a:=3**(n+1)-3>>1)//gcd(a,(1<
Chai Wah Wu, Mar 10 2024
Formula
a(n)/A370826(n) = (3/4) * (3^n - 1) / (2^n - 1).
Comments