A370830 Primes p such that the polynomial x^4-x^3-x^2-x-1 is irreducible mod p.
2, 5, 31, 43, 53, 79, 83, 89, 97, 109, 131, 139, 151, 199, 229, 233, 239, 283, 313, 317, 359, 367, 389, 433, 443, 479, 487, 569, 571, 577, 601, 617, 641, 643, 659, 677, 769, 797, 823, 853, 857, 929, 937, 941, 971, 1013, 1019, 1049, 1063, 1069, 1087, 1093, 1117, 1163, 1171, 1181, 1231, 1249, 1283
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A106283. Cf. 106309.
Programs
-
Maple
P:= x^4 - x^3 - x^2 - x - 1: select(p -> Irreduc(P) mod p, [seq(ithprime(i),i=1..1000)]);
-
Python
from itertools import islice from sympy import Poly, nextprime from sympy.abc import x def A370830_gen(): # generator of terms p = 2 while True: if Poly(x*(x*(x*(x-1)-1)-1)-1, x, modulus=p).is_irreducible: yield p p = nextprime(p) A370830_list = list(islice(A370830_gen(),20)) # Chai Wah Wu, Mar 14 2024