cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A371566 Primes p such that x^5 - x^4 - x^3 - x^2 - x - 1 is irreducible (mod p).

Original entry on oeis.org

5, 7, 11, 13, 17, 31, 37, 41, 53, 79, 107, 199, 233, 239, 311, 331, 337, 389, 463, 523, 541, 547, 557, 563, 577, 677, 769, 853, 937, 971, 1009, 1021, 1033, 1049, 1061, 1201, 1237, 1291, 1307, 1361, 1427, 1453, 1543, 1657, 1699, 1723, 1747, 1753, 1759, 1787, 1801, 1811, 1861, 1877, 1997, 1999
Offset: 1

Views

Author

Robert Israel, Mar 27 2024

Keywords

Crossrefs

Contained in, but not equal to, A106309. Cf. A370830.

Programs

  • Maple
    P:= x^5 - x^4 - x^3 - x^2 - x - 1:
    select(p -> Irreduc(P) mod p, [seq(ithprime(i), i=1..1000)]); # Robert Israel, Mar 13 2024
  • Mathematica
    P = x^5 - x^4 - x^3 - x^2 - x - 1;
    Select[Prime[Range[1000]], IrreduciblePolynomialQ[P, Modulus -> #]&] (* Jean-François Alcover, Mar 24 2024, after Robert Israel *)
  • PARI
    a371566(upto) = forprime (p=2, upto, my(f=factormod(x^5 - x^4 - x^3 - x^2 - x - 1, p)); if(#f[,1]==1, print1(p,", "))) \\ Hugo Pfoertner, Mar 22 2024
  • Python
    from itertools import islice
    from sympy import Poly, nextprime
    from sympy.abc import x
    def A371566_gen(): # generator of terms
        p = 2
        while True:
            if Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=p).is_irreducible:
                yield p
            p = nextprime(p)
    A371566_list = list(islice(A371566_gen(),20)) # Chai Wah Wu, Mar 14 2024
    
Showing 1-1 of 1 results.