cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106309 Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period.

Original entry on oeis.org

5, 7, 11, 13, 17, 31, 37, 41, 53, 79, 107, 199, 233, 239, 311, 331, 337, 389, 463, 523, 541, 547, 557, 563, 577, 677, 769, 853, 937, 971, 1009, 1021, 1033, 1049, 1061, 1201, 1237, 1291, 1307, 1361, 1427, 1453, 1543, 1657, 1699, 1723, 1747, 1753, 1759, 1787, 1801, 1811, 1861, 1877, 1997, 1999
Offset: 1

Views

Author

T. D. Noe, May 02 2005, revised May 12 2005

Keywords

Comments

The first term not in A371566 is a(105) = 4259.

Examples

			a(3) = 11 is a term because the recurrence has period 16105 for all initial conditions except (0,0,0,0,0).
		

Crossrefs

Cf. A106287 (orbits of 5-step sequences). Contains A371566.

Programs

  • Maple
    filter:= proc(p) local Q,q,F,i,z,d,k,kp,G,alpha;
      Q:= z^5  - z^4 - z^3 - z^2 - z - 1;
      if Irreduc(Q) mod p then return true fi;
      F:= (Factors(Q) mod p)[2];
      if ormap(t -> t[2]>1, F) then return false fi;
      for i from 1 to nops(F) do
        q:= F[i][1];
        d:= degree(q);
        if d = 1 then
           kp:= numtheory:-order(solve(q,z),p);
        else
           G:= GF(p,d, q);
           alpha:= G:-ConvertIn(z);
           kp:= G:-order(alpha);
        fi;
        if i = 1 then k:= kp
        elif kp <> k then return false
        fi;
      od;
      true
    end proc:
    select(filter, [seq(ithprime(i),i=1..1000)]);

Extensions

4259 found by D. S. McNeil.
Edited by Robert Israel, Mar 27 2024

A371569 Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period, but x^5 - x^4 - x^3 - x^2 - x - 1 is reducible (mod p).

Original entry on oeis.org

4259, 61643, 94307, 110063, 118171, 348149, 1037903, 1872587, 2149403, 2331859, 2450807, 2490263, 2500847, 2521823, 2534659, 2772179, 2788367, 2789939, 3271883, 3399707, 3550751, 3577487, 3640859, 3861899, 3904309, 4016219, 4063211, 4236719, 4245239, 4368739, 4441007, 4542779, 5033477, 5446283
Offset: 1

Views

Author

Robert Israel, Mar 28 2024

Keywords

Comments

Terms of A106309 that are not in A371566.
In each of the first 2000 terms, x^5 - x^4 - x^3 - x^2 - x - 1 splits into linear factors (mod p). Are there any where it does not?

Examples

			a(3) = 94307 is a term because 94307 is prime, z^5  - z^4 - z^3 - z^2 - z - 1 = (z + 11827)*(z + 78583)*(z + 54610)*(z + 14536)*(z + 29057) (mod 94307), and the recurrence has period 47153 for all initial conditions except (0,0,0,0,0), as -11827, -78583, -54610, -14536, and -29057 all have multiplicative order 47153 (mod 94307).
		

Crossrefs

Programs

  • Maple
    filter:= proc(p) local Q, q, F, i, z, d, k, kp, G, alpha;
      if not isprime(p) then return false fi;
      Q:= z^5  - z^4 - z^3 - z^2 - z - 1;
      if Irreduc(Q) mod p then return false fi;
      F:= (Factors(Q) mod p)[2];
      if ormap(t -> t[2]>1, F) then return false fi;
      for i from 1 to nops(F) do
         q:= F[i][1];
         d:= degree(q);
         if d = 1 then kp:= NumberTheory:-MultiplicativeOrder(p+solve(q, z), p);
         else
             G:= GF(p, d, q);
             alpha:= G:-ConvertIn(z);
             kp:= G:-order(alpha);
         fi;
         if i = 1 then k:= kp
         elif kp <> k then return false
         fi;
      od;
      true
    end proc:
    select(filter, [seq(i, i=3 .. 10^7,2)]);
Showing 1-2 of 2 results.