A370879 a(n) = 2^n*t + 1 where t is the least x such that there exists an r in the range 2 <= r <= x+1 that is coprime to 2^n*x + 1 and has multiplicative order 2^n modulo 2^n*x + 1.
3, 5, 17, 193, 353, 641, 769, 10753, 10753, 13313, 12289, 114689, 114689, 163841, 786433, 786433, 6684673, 13631489, 5767169, 7340033, 111149057, 104857601, 167772161, 167772161, 469762049, 2483027969, 2281701377, 3221225473, 12348030977, 52613349377
Offset: 1
Keywords
Examples
n | t | r | 2^n*t+1 --------------------- 1 | 1 | 2 | 3 2 | 1 | 2 | 5 3 | 2 | 2 | 17 4 | 12 | 3 | 193 5 | 11 | 6 | 353
Crossrefs
Cf. A035089.
Programs
-
PARI
isok(t, n) = for (r=2, t+1, if ((gcd(r, 2^n*t + 1)==1) && znorder(Mod(r, 2^n*t + 1)) == 2^n, return(1))); return(0); a(n) = my(t=1); while (!isok(t, n), t++); 2^n*t + 1; \\ Michel Marcus, Mar 17 2024
-
Python
def a(n): t = 1 while True: a_n = (t << n) + 1 for r in range(2, t+2): if pow(r, 1 << (n-1), a_n) + 1 == a_n: return a_n t += 1 print([a(n) for n in range(1,31)])
Comments