cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370879 a(n) = 2^n*t + 1 where t is the least x such that there exists an r in the range 2 <= r <= x+1 that is coprime to 2^n*x + 1 and has multiplicative order 2^n modulo 2^n*x + 1.

Original entry on oeis.org

3, 5, 17, 193, 353, 641, 769, 10753, 10753, 13313, 12289, 114689, 114689, 163841, 786433, 786433, 6684673, 13631489, 5767169, 7340033, 111149057, 104857601, 167772161, 167772161, 469762049, 2483027969, 2281701377, 3221225473, 12348030977, 52613349377
Offset: 1

Views

Author

DarĂ­o Clavijo, Mar 03 2024

Keywords

Comments

r^(2^(n-1)) == -1 (mod a(n)).
Is there a proof that a(n) always exists?

Examples

			 n |  t | r | 2^n*t+1
---------------------
 1 |  1 | 2 | 3
 2 |  1 | 2 | 5
 3 |  2 | 2 | 17
 4 | 12 | 3 | 193
 5 | 11 | 6 | 353
		

Crossrefs

Cf. A035089.

Programs

  • PARI
    isok(t, n) = for (r=2, t+1, if ((gcd(r, 2^n*t + 1)==1) && znorder(Mod(r, 2^n*t + 1)) == 2^n, return(1))); return(0);
    a(n) = my(t=1); while (!isok(t, n), t++); 2^n*t + 1; \\ Michel Marcus, Mar 17 2024
  • Python
    def a(n):
      t = 1
      while True:
        a_n = (t << n) + 1
        for r in range(2, t+2):
          if pow(r, 1 << (n-1), a_n) + 1 == a_n:
            return a_n
        t += 1
    print([a(n) for n in range(1,31)])