cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370890 A(n, k) = 2^n*Pochhammer(k/2, floor((n+1)/2)). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 4, 3, 1, 0, 12, 16, 6, 4, 1, 0, 60, 32, 30, 8, 5, 1, 0, 120, 192, 60, 48, 10, 6, 1, 0, 840, 384, 420, 96, 70, 12, 7, 1, 0, 1680, 3072, 840, 768, 140, 96, 14, 8, 1, 0, 15120, 6144, 7560, 1536, 1260, 192, 126, 16, 9, 1
Offset: 0

Views

Author

Peter Luschny, Mar 04 2024

Keywords

Examples

			The array starts:
[0] 1,  1,   1,   1,   1,    1,    1,    1,    1,    1, ...
[1] 0,  1,   2,   3,   4,    5,    6,    7,    8,    9, ...
[2] 0,  2,   4,   6,   8,   10,   12,   14,   16,   18, ...
[3] 0,  6,  16,  30,  48,   70,   96,  126,  160,  198, ...
[4] 0, 12,  32,  60,  96,  140,  192,  252,  320,  396, ...
[5] 0, 60, 192, 420, 768, 1260, 1920, 2772, 3840, 5148, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   2,   2,  1;
[4] 0,   6,   4,  3,  1;
[5] 0,  12,  16,  6,  4,  1;
[6] 0,  60,  32, 30,  8,  5, 1;
[7] 0, 120, 192, 60, 48, 10, 6, 1;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> 2^n*pochhammer(k/2, iquo(n+1,2)):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    A370890[n_, k_] := 2^n*Pochhammer[k/2, Floor[(n+1)/2]];
    Table[A370890[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
  • SageMath
    # Note the use of different kinds of division.
    def A(n, k): return 2**n * rising_factorial(k/2, (n+1)//2)
    for n in range(0, 9): print([A(n, k) for k in range(0, 9)])