cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370934 Expansion of e.g.f. (1/x) * Series_Reversion( x*(4 - exp(3*x))/3 ).

Original entry on oeis.org

1, 1, 7, 84, 1497, 35676, 1067931, 38548980, 1630600677, 79132611420, 4334891782095, 264625534657188, 17815224081030129, 1311349332273617196, 104778837463344022179, 9031998822763725245268, 835500403485829779202557, 82557790782397502710806396
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(4-exp(3*x))/3)/x))
    
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*(n+k)!*stirling(n, k, 2))/(n+1)!;

Formula

a(n) = (1/(n+1)!) * Sum_{k=0..n} 3^(n-k) * (n+k)! * Stirling2(n,k).

A371298 E.g.f. satisfies A(x) = 2/(3 - exp(2*x*A(x)^2)).

Original entry on oeis.org

1, 1, 8, 124, 2928, 93496, 3773536, 184354752, 10580324096, 697840047616, 52018550966784, 4324989984168448, 396842631019350016, 39833949803142014976, 4342129457277000261632, 510808184298890239393792, 64504327889586673547673600, 8703038855093947990994452480
Offset: 0

Views

Author

Seiichi Manyama, Mar 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*(2*n+k)!*stirling(n, k, 2))/(2*n+1)!;

Formula

a(n) = (1/(2*n+1)!) * Sum_{k=0..n} 2^(n-k) * (2*n+k)! * Stirling2(n,k).
Showing 1-2 of 2 results.