A370894 Expansion of e.g.f. (1/x) * Series_Reversion( x*(3 - exp(2*x))/2 ).
1, 1, 6, 64, 1016, 21576, 575680, 18525088, 698625408, 30229271680, 1476535180544, 80371762466304, 4824793854177280, 316685993746640896, 22563822118152880128, 1734427247284290015232, 143072322233503079038976, 12606854482934004152303616
Offset: 0
Keywords
Programs
-
PARI
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(3-exp(2*x))/2)/x))
-
PARI
a(n) = sum(k=0, n, 2^(n-k)*(n+k)!*stirling(n, k, 2))/(n+1)!;
Formula
a(n) = (1/(n+1)!) * Sum_{k=0..n} 2^(n-k) * (n+k)! * Stirling2(n,k).
a(n) ~ 2^(2*n+1) * LambertW(3*exp(1))^(n+1) * n^(n-1) / (sqrt(1 + LambertW(3*exp(1))) * 3^(n+1) * exp(n) * (LambertW(3*exp(1)) - 1)^(2*n+1)). - Vaclav Kotesovec, Mar 06 2024