cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379359 Numerators of the partial sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 2, 3, 7, 9, 11, 13, 41, 22, 25, 28, 59, 65, 71, 77, 391, 421, 218, 233, 481, 511, 541, 571, 581, 298, 313, 106, 217, 227, 237, 247, 1739, 1809, 1879, 1949, 3933, 4073, 4213, 4353, 13199, 13619, 14039, 14459, 14669, 14879, 15299, 15719, 15803, 16013, 16223, 16643
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 2, 3, 7/2, 9/2, 11/2, 13/2, 41/6, 22/3, 25/3, 28/3, 59/6, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 13-16, Theorem 1.3.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See section 5.1, Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A000688, A063966, A084911, A370897, A379360 (denominators), A379361.

Programs

  • Mathematica
    Numerator[Accumulate[Table[1/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / f(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A000688(k)).
a(n)/A379360(n) = D * n + O(sqrt(n/log(n))), where D = A084911.

A379360 Denominators of the partial sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 6, 6, 6, 6, 30, 30, 15, 15, 30, 30, 30, 30, 30, 15, 15, 5, 10, 10, 10, 10, 70, 70, 70, 70, 140, 140, 140, 140, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 140, 140, 140, 140, 140, 140, 140, 140
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 13-16, Theorem 1.3.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See section 5.1, Abelian group enumeration constants, p. 274.

Crossrefs

Cf. A000688, A063966, A370897, A379359 (numerators), A379362.

Programs

  • Mathematica
    Denominator[Accumulate[Table[1/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / f(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A000688(k)).

A379361 Numerators of the partial alternating sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 0, 1, 1, 3, 1, 3, 7, 5, 2, 5, 7, 13, 7, 13, 59, 89, 37, 52, 89, 119, 89, 119, 109, 62, 47, 52, 89, 119, 89, 119, 803, 1013, 803, 1013, 1921, 2341, 1921, 2341, 2201, 2621, 2201, 2621, 2411, 2621, 2201, 2621, 2537, 2747, 2537, 2957, 2747, 3167, 1009, 1149, 3307
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 0, 1, 1/2, 3/2, 1/2, 3/2, 7/6, 5/3, 2/3, 5/3, 7/6, ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Accumulate[Table[(-1)^(n+1)/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / f(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A000688(k)).
a(n)/A379362(n) ~ D * c * n, where D = A084911, c = 2/(1 + Sum_{k>=1} 1/(P(k)*2^k)) - 1 = 0.18634377034863729099..., and P(k) = A000041(k).

A379362 Denominators of the partial alternating sums of the reciprocals of the number of abelian groups function (A000688).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 6, 3, 3, 3, 6, 6, 6, 6, 30, 30, 15, 15, 30, 30, 30, 30, 30, 15, 15, 15, 30, 30, 30, 30, 210, 210, 210, 210, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 420, 140, 140, 420, 420, 420, 420, 420, 420, 420
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Crossrefs

Cf. A000688, A063966, A370897, A379360, A379361 (numerators).

Programs

  • Mathematica
    Denominator[Accumulate[Table[(-1)^(n+1)/FiniteAbelianGroupCount[n], {n, 1, 100}]]]
  • PARI
    f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / f(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A000688(k)).
Showing 1-4 of 4 results.