cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370889 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*exp(x^2/2)) ).

Original entry on oeis.org

1, 1, 2, 9, 72, 735, 9000, 133035, 2325120, 46631025, 1053108000, 26484495345, 734652737280, 22280390827695, 733335188826240, 26035824337798275, 991872319953715200, 40360728513989909025, 1747119524427614937600, 80166580022376802179225
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(1+x*exp(x^2/2)))/x))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k*binomial(n+1, n-2*k)/(2^k*k!))/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n+1,n-2*k)/(2^k * k!).
a(n) ~ (1 + 3*LambertW(1/3))^(n + 3/2) * n^(n-1) / (sqrt(1 + LambertW(1/3)) * 3^(3*n/2 + 2) * exp(n) * LambertW(1/3)^(3*(n+1)/2)). - Vaclav Kotesovec, Mar 06 2024

A371021 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x^3/6*exp(x)) ).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 80, 1015, 9016, 80724, 1092120, 16872405, 246966940, 3932454526, 73869476044, 1485097614455, 30688224287280, 682450482838440, 16508839426673136, 420562937260614249, 11193327347979937140, 315276822746559147250, 9383980947735649740100
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(n!/(n + 1))*Sum[k^(n - 3*k)*Binomial[n + 1, k]/(6^k*(n - 3*k)!), {k, 0, Floor[n/3]}], {n, 30}]] (* Wesley Ivan Hurt, Aug 05 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(1+x^3/6*exp(x)))/x))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)*binomial(n+1, k)/(6^k*(n-3*k)!))/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..floor(n/3)} k^(n-3*k) * binomial(n+1,k)/(6^k * (n-3*k)!).
Showing 1-2 of 2 results.