A370970 Numbers k which have a factorization k = f1*f2*...*fr where the digits of {k, f1, f2, ..., fr} together give 0,1,...,9 exactly once.
8596, 8790, 9360, 9380, 9870, 10752, 12780, 14760, 14820, 15628, 15678, 16038, 16704, 17082, 17820, 17920, 18720, 19084, 19240, 20457, 20574, 20754, 21658, 24056, 24507, 25803, 26180, 26910, 27504, 28156, 28651, 30296, 30576, 30752, 31920, 32760, 32890, 34902, 36508, 47320, 58401, 65128, 65821
Offset: 1
Examples
The complete list of terms: 8596 = 2*14*307 8790 = 2*3*1465 9360 = 2*4*15*78 9380 = 2*5*14*67 9870 = 2*3*1645 10752 = 3*4*896 12780 = 4*5*639 14760 = 5*9*328 14820 = 5*39*76 15628 = 4*3907 15678 = 39*402 16038 = 27*594 = 54*297 16704 = 9*32*58 17082 = 3*5694 17820 = 36*495 = 45*396 17920 = 8*35*64 18720 = 4*5*936 19084 = 52*367 19240 = 8*37*65 20457 = 3*6819 20574 = 6*9*381 20754 = 3*6918 21658 = 7*3094 24056 = 8*31*97 24507 = 3*8169 25803 = 9*47*61 26180 = 4*7*935 26910 = 78*345 27504 = 3*9168 28156 = 4*7039 28651 = 7*4093 30296 = 7*8*541 30576 = 8*42*91 30752 = 4*8*961 31920 = 5*76*84 32760 = 8*45*91 32890 = 46*715 34902 = 6*5817 36508 = 4*9127 47320 = 8*65*91 58401 = 63*927 65128 = 7*9304 65821 = 7*9403
Links
- Hans Havermann, Pandigital Products, Apr 13 2024
Comments