cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370970 Numbers k which have a factorization k = f1*f2*...*fr where the digits of {k, f1, f2, ..., fr} together give 0,1,...,9 exactly once.

Original entry on oeis.org

8596, 8790, 9360, 9380, 9870, 10752, 12780, 14760, 14820, 15628, 15678, 16038, 16704, 17082, 17820, 17920, 18720, 19084, 19240, 20457, 20574, 20754, 21658, 24056, 24507, 25803, 26180, 26910, 27504, 28156, 28651, 30296, 30576, 30752, 31920, 32760, 32890, 34902, 36508, 47320, 58401, 65128, 65821
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2024, following emails from Ed Pegg Jr and Hans Havermann. The terms were computed by Hans Havermann

Keywords

Comments

The total number of digits in k, f1, ..., fr is ten, and they are all distinct.

Examples

			The complete list of terms:
 8596 = 2*14*307
 8790 = 2*3*1465
 9360 = 2*4*15*78
 9380 = 2*5*14*67
 9870 = 2*3*1645
10752 = 3*4*896
12780 = 4*5*639
14760 = 5*9*328
14820 = 5*39*76
15628 = 4*3907
15678 = 39*402
16038 = 27*594 = 54*297
16704 = 9*32*58
17082 = 3*5694
17820 = 36*495 = 45*396
17920 = 8*35*64
18720 = 4*5*936
19084 = 52*367
19240 = 8*37*65
20457 = 3*6819
20574 = 6*9*381
20754 = 3*6918
21658 = 7*3094
24056 = 8*31*97
24507 = 3*8169
25803 = 9*47*61
26180 = 4*7*935
26910 = 78*345
27504 = 3*9168
28156 = 4*7039
28651 = 7*4093
30296 = 7*8*541
30576 = 8*42*91
30752 = 4*8*961
31920 = 5*76*84
32760 = 8*45*91
32890 = 46*715
34902 = 6*5817
36508 = 4*9127
47320 = 8*65*91
58401 = 63*927
65128 = 7*9304
65821 = 7*9403
		

Crossrefs