A371037 Orders of almost simple groups.
60, 120, 168, 336, 360, 504, 660, 720, 1092, 1320, 1440, 1512, 2184, 2448, 2520, 3420, 4080, 4896, 5040, 5616, 6048, 6072, 6840, 7800, 7920, 8160, 9828, 11232, 12096, 12144, 12180, 14880, 15600, 16320, 19656, 20160, 24360, 25308, 25920, 29120, 29484, 29760, 31200, 32736, 34440
Offset: 1
Keywords
Examples
For n = 1, 2, 3, 4 the values a(n) = 60, 120, 168, 336 correspond to the groups A5, S5, PSL(2,7), PGL(2,7), respectively.
Links
- Sébastien Palcoux, Table of n, a(n) for n = 1..113
- T. Connor and D. Leemans, An atlas of subgroup lattices of finite almost simple groups.
- GroupNames, Almost simple groups.
- Groupprops, Almost simple group.
- Wikipedia, Almost simple group.
Crossrefs
Cf. A001034.
Programs
-
GAP
m := 100000;; L := [];; it := SimpleGroupsIterator(2, m);; for g in it do ag := AutomorphismGroup(g);; iag := InnerAutomorphismsAutomorphismGroup(ag);; Inter := IntermediateSubgroups(ag, iag).subgroups;; LL := [Order(ag), Order(iag)];; for h in Inter do Add(LL, Order(h));; od; for o in LL do if o <= m and (not o in L) then Add(L, o);; fi; od; od; Sort(L);; Print(L);;
Comments