cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371082 Composite numbers for which A324644(n)/A324198(n) = 2 and sigma(n) == 2 (mod 4).

Original entry on oeis.org

153, 477, 637, 909, 1017, 1233, 1557, 2097, 3577, 4753, 9457, 10693, 10933, 12393, 13357, 14013, 15337, 17629, 20817, 21097, 21217, 22021, 26353, 29449, 30037, 30717, 31117, 31149, 31797, 32013, 32229, 32337, 32481, 32977, 35557, 35917, 38637, 38725, 41797, 42237, 50029, 53557, 56497, 56677, 56953, 58621, 59437, 60309
Offset: 1

Views

Author

Antti Karttunen, Mar 10 2024

Keywords

Crossrefs

Intersection of A191218 and A364286.
Apparently also the intersection of A228058 and A364286.

Programs

  • Mathematica
    f[x_] := Block[{m, i, n = x, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m]; Select[Select[Range[2^16], CompositeQ], GCD[#2, #3]/GCD[#1, #3] == Mod[#2, 4] == 2 & @@ {#, DivisorSigma[1, #], f[#]} &] (* Michael De Vlieger, Mar 10 2024 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA371082(n) = if(isprime(n) || (2!=(sigma(n)%4)), 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u)));