A371091 Number of 1's in the recursive decomposition of primorial base expansion of n.
0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 3, 4, 4, 5, 4, 5, 4, 5, 5, 6, 5, 6, 3, 4, 4, 5, 4, 5, 1
Offset: 0
Examples
n A049345(n) recursive a(n) = number of 1's decomposition in the decomposition -------------------------------------------------------------------- 0 0 () 0 1 1 (1) 1 2 10 (1 0) 1 3 11 (1 1) 2 4 20 ((1 0) 0) 1 5 21 ((1 0) 1) 2 6 100 (1 0 0) 1 7 101 (1 0 1) 2 8 110 (1 1 0) 2 9 111 (1 1 1) 3 10 120 (1 (1 0) 0) 2 11 121 (1 (1 0) 1) 3 12 200 ((1 0) 0 0) 1 .. 21 311 ((1 1) 1 1) 4 .. 24 400 (((1 0) 0) 0 0) 1 .. 29 421 (((1 0) 0) (1 0) 1) 3 30 1000 (1 0 0 0) 1 .. 51 1311 (1 (1 1) 1 1) 5 .. 59 1421 (1 ((1 0) 0) (1 0) 1) 4 60 2000 ((1 0) 0 0 0) 1 .. 111 3311 ((1 1) (1 1) 1 1) 6 ... 360 15000 (1 ((1 0) 1) 0 0 0) 3 ... 2001 93311 ((1 1 1) (1 1) (1 1) 1 1) 9 .... 4311 193311 (1 (1 1 1) (1 1) (1 1) 1 1) 10. 29 is decomposed in piecemeal fashion as: A049345(29) = 421 --> ("20" "10" "1") --> (((1 0) 0) (1 0) 1).
Comments