A371121
E.g.f. satisfies A(x) = 1 - x*A(x)*log(1 - x*A(x)).
Original entry on oeis.org
1, 0, 2, 3, 56, 330, 5724, 68460, 1351552, 24594192, 578257200, 13915923120, 389216689344, 11518744311360, 377576873670528, 13185760854520800, 497969104450867200, 19992393239486976000, 856421361373185137664, 38819358713756193292800
Offset: 0
-
a(n) = n!^2*sum(k=0, n\2, abs(stirling(n-k, k, 1))/((n-k)!*(n-k+1)!));
A371115
E.g.f. satisfies A(x) = 1 + x*(exp(x*A(x)) - 1).
Original entry on oeis.org
1, 0, 2, 3, 28, 185, 1566, 18277, 218744, 3206961, 52134490, 935303501, 18733723812, 406458491881, 9598660337462, 244471271572725, 6671672053304176, 194631575264393057, 6036199529439919410, 198427339307102272669, 6892068588221322730460
Offset: 0
-
nmax = 20; CoefficientList[Series[1 - x - ProductLog[-E^((1 - x)*x)*x^2]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 11 2024 *)
-
a(n) = n!*sum(k=0, n\2, stirling(n-k, k, 2)/(n-2*k+1)!);
A371227
E.g.f. satisfies A(x) = 1 - x*log(1 - x*A(x)^2).
Original entry on oeis.org
1, 0, 2, 3, 56, 390, 6384, 92400, 1812768, 38565072, 949927680, 25934040000, 783458550720, 25909868761920, 930720395219328, 36108805836317760, 1504050682102456320, 66964478742976711680, 3173178938051223889920, 159461567895099436047360
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (2*n-2*k)!*abs(stirling(n-k, k, 1))/((n-k)!*(2*n-3*k+1)!));
A371118
E.g.f. satisfies A(x) = 1 - x^2*log(1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 900, 8568, 80640, 1170720, 19625760, 335079360, 6259524480, 132897697920, 3078950434560, 75934287475200, 2010354982272000, 57241482249369600, 1735591000023336960, 55694476130213652480, 1889613850762113638400
Offset: 0
-
a(n) = n!*sum(k=0, n\3, abs(stirling(n-2*k, k, 1))/(n-3*k+1)!);
A371122
E.g.f. satisfies A(x) = 1 - x*A(x)^3*log(1 - x*A(x)).
Original entry on oeis.org
1, 0, 2, 3, 104, 570, 19284, 220500, 7975008, 148889664, 5911249680, 157016471040, 6913129099392, 239681708117280, 11734594390915200, 501510627153244800, 27265653826293749760, 1380895751066249779200, 83060557136719693406208
Offset: 0
-
a(n) = n!*sum(k=0, n\2, (n+2*k)!*abs(stirling(n-k, k, 1))/((n-k)!*(n+k+1)!));
A377685
E.g.f. satisfies A(x) = (1 - x * log(1 - x*A(x)))^2.
Original entry on oeis.org
1, 0, 4, 6, 136, 900, 16308, 229320, 4691104, 99156960, 2481162480, 67862678400, 2063842827264, 68473763804160, 2468786906210688, 96048626176339200, 4010912604492410880, 178968539487145282560, 8496991445958129576960, 427734144995749047152640
Offset: 0
-
a(n) = 2*n!*sum(k=0, n\2, (2*n-2*k+1)!*abs(stirling(n-k, k, 1))/((n-k)!*(2*n-3*k+2)!));
A377686
E.g.f. satisfies A(x) = (1 - x * log(1 - x*A(x)))^3.
Original entry on oeis.org
1, 0, 6, 9, 312, 2070, 53892, 797580, 21541440, 508313232, 15840608400, 502075577520, 18473543511552, 722232734446080, 31135359390952320, 1435933667363963040, 71392285554374384640, 3782802775152784320000, 213512536856209839796224, 12767785967296083820561920
Offset: 0
-
a(n) = 3*n!*sum(k=0, n\2, (3*n-3*k+2)!*abs(stirling(n-k, k, 1))/((n-k)!*(3*n-4*k+3)!));
Showing 1-7 of 7 results.