cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371140 E.g.f. satisfies A(x) = 1 - x*A(x)^2 * log(1 - x).

Original entry on oeis.org

1, 0, 2, 3, 56, 270, 5064, 47040, 984416, 14116032, 336538080, 6589416240, 179336461248, 4446985514400, 137520942168960, 4112410749501600, 143445512622458880, 5004065722611594240, 195260931334478223360, 7762385328551718796800, 336051947630616458065920
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(-1 + Sqrt[1 + 4*x*Log[1 - x]])/(2*x*Log[1 - x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 12 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(2/(1+sqrt(1+4*x*log(1-x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (2*k)!/(k+1)!*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

E.g.f.: 2/(1 + sqrt(1+4*x*log(1-x))).
a(n) = n! * Sum_{k=0..floor(n/2)} (2*k)!/(k+1)! * |Stirling1(n-k,k)|/(n-k)!.
a(n) ~ sqrt(2 + 8*r^2/(1-r)) * n^(n-1) / (exp(n) * r^n), where r = 0.436224579489690436773045325306926562580857950193340891933383996... is the root of the equation 4*r*log(1-r) = -1. - Vaclav Kotesovec, Mar 12 2024

A371143 E.g.f. satisfies A(x) = 1 + x*A(x)^3 * (exp(x) - 1).

Original entry on oeis.org

1, 0, 2, 3, 76, 365, 9906, 94507, 2832824, 43209945, 1438766830, 30971280791, 1146868043124, 32166137748901, 1322928667341386, 45791799761422275, 2085517396191903856, 85748423669245738673, 4306944218393176448742, 204597526239295278145327
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (3*k)!/(2*k+1)!*stirling(n-k, k, 2)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (3*k)!/(2*k+1)! * Stirling2(n-k,k)/(n-k)!.

A377691 E.g.f. satisfies A(x) = (1 - x * log(1 - x) * A(x))^3.

Original entry on oeis.org

1, 0, 6, 9, 312, 1530, 47952, 468720, 15273696, 238738752, 8404102080, 185234979600, 7145001364608, 204957002147040, 8705298805015680, 307822476591957600, 14400927608439260160, 604208707715034777600, 31065769175985079142400, 1504405685073556864627200
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*n!*sum(k=0, n\2, (3*k+2)!*abs(stirling(n-k, k, 1))/((n-k)!*(2*k+3)!));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A371141.
a(n) = 3 * n! * Sum_{k=0..floor(n/2)} (3*k+2)! * |Stirling1(n-k,k)|/( (n-k)! * (2*k+3)! ).
Showing 1-3 of 3 results.