cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371234 E.g.f. satisfies A(x) = 1 - x^2*A(x)^4*log(1 - x*A(x)^2).

Original entry on oeis.org

1, 0, 0, 6, 12, 40, 4500, 36288, 302400, 21280320, 372808800, 5690583360, 328776433920, 9448800042240, 224460513268992, 12193757153424000, 487602908139110400, 16244434378146723840, 899553800205694310400, 45212291317983663820800
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*(2*n)!*sum(k=0, n\3, abs(stirling(n-2*k, k, 1))/((n-2*k)!*(2*n-k+1)!));

Formula

a(n) = n! * (2*n)! * Sum_{k=0..floor(n/3)} |Stirling1(n-2*k,k)|/( (n-2*k)! * (2*n-k+1)! ).

A371235 E.g.f. satisfies A(x) = 1 - x^2*A(x)^5*log(1 - x*A(x)^2).

Original entry on oeis.org

1, 0, 0, 6, 12, 40, 5220, 41328, 339360, 28477440, 489877920, 7325176320, 501467630400, 14323336634880, 333439476289920, 21001701037363200, 849627551212876800, 27872303353627299840, 1742879646852427791360, 90170933394707691724800
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, (2*n+k)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(2*n+1)!;

Formula

a(n) = (n!/(2*n+1)!) * Sum_{k=0..floor(n/3)} (2*n+k)! * |Stirling1(n-2*k,k)|/(n-2*k)!.
Showing 1-2 of 2 results.