A371234
E.g.f. satisfies A(x) = 1 - x^2*A(x)^4*log(1 - x*A(x)^2).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 4500, 36288, 302400, 21280320, 372808800, 5690583360, 328776433920, 9448800042240, 224460513268992, 12193757153424000, 487602908139110400, 16244434378146723840, 899553800205694310400, 45212291317983663820800
Offset: 0
-
a(n) = n!*(2*n)!*sum(k=0, n\3, abs(stirling(n-2*k, k, 1))/((n-2*k)!*(2*n-k+1)!));
A371233
E.g.f. satisfies A(x) = 1 - x^2*log(1 - x*A(x)^2).
Original entry on oeis.org
1, 0, 0, 6, 12, 40, 1620, 16128, 154560, 3378240, 67828320, 1247843520, 28996704000, 773215822080, 20900234234880, 609432997219200, 19677823129036800, 674330219708221440, 24327437969162280960, 936555233579552563200, 38250260222888409292800
Offset: 0
-
a(n) = n!*sum(k=0, n\3, (2*n-4*k)!*abs(stirling(n-2*k, k, 1))/((n-2*k)!*(2*n-5*k+1)!));
A376436
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x))^2 ).
Original entry on oeis.org
1, 0, 0, 12, 24, 80, 11160, 87696, 715680, 62337600, 1065980160, 15842534400, 1109943362880, 31591940440320, 731706348941568, 46767587926752000, 1889337264901632000, 61735665488234250240, 3896148715287564902400, 201584132714100384460800, 8661099107269708639948800, 567405718655558932535500800
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x))^2)/x))
-
a(n) = 2*n!*sum(k=0, n\3, (2*n+k+1)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(2*n+2)!;
Showing 1-3 of 3 results.