A371292 Numbers whose binary indices have prime indices covering an initial interval of positive integers.
0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 86, 87, 92, 93, 94, 95, 112, 113, 114, 115, 116, 117, 118, 119
Offset: 0
Examples
The terms together with their prime indices of binary indices begin: 0: {} 1: {{}} 2: {{1}} 3: {{},{1}} 6: {{1},{2}} 7: {{},{1},{2}} 8: {{1,1}} 9: {{},{1,1}} 10: {{1},{1,1}} 11: {{},{1},{1,1}} 12: {{2},{1,1}} 13: {{},{2},{1,1}} 14: {{1},{2},{1,1}} 15: {{},{1},{2},{1,1}} 22: {{1},{2},{3}} 23: {{},{1},{2},{3}} 28: {{2},{1,1},{3}} 29: {{},{2},{1,1},{3}} 30: {{1},{2},{1,1},{3}} 31: {{},{1},{2},{1,1},{3}} 32: {{1,2}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[0,100],normQ[Join@@prix/@bpe[#]]&]
-
Python
from itertools import count, islice from sympy import sieve, factorint def a_gen(): for n in count(0): s = set() b = [(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'] for i in b: p = factorint(i) for j in p: s.add(sieve.search(j)[0]) x = sorted(s) y = len(x) if sum(x) == (y*(y+1))//2: yield n A371292_list = list(islice(a_gen(), 65)) # John Tyler Rascoe, May 21 2024
Comments