A371358 Number of binary strings of length n which have more 00 than 01 substrings.
0, 0, 1, 2, 4, 10, 21, 42, 89, 184, 371, 758, 1546, 3122, 6315, 12782, 25780, 51962, 104759, 210934, 424404, 853806, 1716759, 3450158, 6932169, 13924260, 27959805, 56130762, 112662414, 226080318, 453595341, 909925794, 1825052601, 3660020992, 7339006091
Offset: 0
Keywords
Examples
a(4) = 4: 0000, 0001, 1000, 1100. a(5) = 10: 00000, 00001, 00010, 00011, 00100, 01000, 10000, 10001, 11000, 11100.
Links
- Robert P. P. McKone, Table of n, a(n) for n = 0..1698
Crossrefs
Programs
-
Maple
b:= proc(n, l, t) option remember; `if`(n+t<1, 0, `if`(n=0, 1, add(b(n-1, i, t+`if`(l=0, (-1)^i, 0)), i=0..1))) end: a:= n-> b(n, 2, 0): seq(a(n), n=0..34); # Alois P. Heinz, Mar 20 2024
-
Mathematica
tup[n_] := Tuples[{0, 1}, n]; cou[lst_List] := Count[lst, {0, 0}] > Count[lst, {0, 1}]; par[lst_List] := Partition[lst, 2, 1]; a[n_] := Map[cou, Map[par, tup[n]]] // Boole // Total; Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}]
-
PARI
{ a371358(n) = 2^(n-1) - sum(k=0, n\3, binomial(2*k,k) * (2*binomial(n-2*k,n-3*k) - binomial(n-2*k-1,n-3*k))) / 2; } \\ Max Alekseyev, May 01 2024
Formula
a(n) = ((4*n^2-15*n+7)*a(n-1) -(5*n^2-22*n+14)*a(n-2) +2*(3*n^2-14*n+10)*a(n-3) -4*(3*n^2-16*n+18)*a(n-4) +8*(n-2)*(n-4)*a(n-5)) / (n*(n-3)) for n>=5. - Alois P. Heinz, Mar 20 2024
For n >= 2, a(n) = 2*a(n-1) + A163493(n-1) - A163493(n-2) - A370048(n-2). - Max Alekseyev, Apr 30 2024
a(n) = 2^(n-1) - (1/2) * Sum_{k=0..floor(n/3)} binomial(2*k,k) * (2*binomial(n-2*k,n-3*k) - binomial(n-2*k-1,n-3*k)). - Max Alekseyev, May 01 2024
G.f. 1/(1-2*x)/2 - (1+x)/(2*sqrt(1-2*x+x^2-4*x^3+4*x^4)). - Max Alekseyev, Apr 30 2024